
Models and Methods for Free Material

Optimization with Local Stress Constraints

Alemseged Gebrehiwot Weldeyesus∗

Abstract

Free Material Optimization (FMO) is a powerful approach of structural
optimization of composite structures leading to conceptual optimal designs.
The design variable is the elastic material tensor which is allowed to change
its values freely over the design domain giving optimal material properties
and optimal material distribution. The only requirements are that the stiff-
ness tensor is forced to be symmetric positive semidefinite as a necessary
condition for its physical attainability. One of the goals of this article to
introduce constraints on local stresses to existing FMO problems for lami-
nated plates and shells and propose new stress constrained FMO problem
formulations. The FMO problems are non convex semidefinite program
with a special structure involving many small matrix inequalities. This
structure is exploited by our special purpose optimization method. The
second goal of this article is to extend primal-dual interior point method
for classical FMO problems to stress constrained FMO problems. The
numerical experiments show that the optimal solutions to the stress con-
strained problems can be achieved within a moderate number of iterations.
The local stress constraints are satisfied with high accuracy. The method
and models are supported by numerical examples.
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1 Introduction

Free Material Optimization (FMO) deals with obtaining a composite structure
with optimal material properties and optimal material distribution that can sus-
tain a given set of loads. Such optimal structures can be considered as ultimately
best structures among all possible elastic continua [36]. These optimal designs
can also be used as benchmarks with which other designs obtained by other
approaches of structural optimization can be compared.

The basic concept of FMO can be traced back to the early 1990s in [2], [3], and
[22]. Since then there are several research studies dealing with more advanced
FMO models. FMO formulations have been extended to include a wide range of
constraints such as constraints on local stresses, local strains, displacement and
fundamental frequencies in e.g. [17], [15], [11], and [25]. Theoretical aspects of
FMO problems including existence of optimal solutions are analyzed in different
studies [11] and [34]. There are also numerical optimization methods proposed
in several articles [36], [14], [24], [27], [26], and [33].

High stresses are one of the causes for engineering structures to fail. The
scope of several studies in structural optimization are extended to control stresses
within a certain limit in the optimal structures. However, addressing stresses
in the optimization problem is not straight forward. The choice of optimization
problem formulation with relevant stress criteria and the development of methods
that can computationally handle the problems are some of the main challenges.

Topology optimization is one of the research fields that has been extensively
studied. For stress-based topology optimization see [35], [23], [5], [7], [20], and
[18] for continua, and [13], [10], [29], and [30] for trusses and the references
therein. Stresses are addressed in topology optimization in several ways. One
way is limiting the stresses by introducing stress constraints which can be local
at element level or global by aggregating the stresses in the design. Adding
such constraints however leads to optimization problems that are difficult to
solve. Suitable mathematical properties such as convexity are lost. Moreover,
the problems face the singularity phenomenon described in e.g. [13] and [1]
among many others.

FMO problems with stress constraints are analyzed and solved in [17], [16],
and [15] for two-dimensional and in [11] for three-dimensional structures. The
constraints are introduced with a term of an integral of the norm of the stresses.
One of the outcome of FMO models is that higher stresses are primarily removed
by changing material properties. This is unlike to other approaches in structural
optimization where the materials are fixed and higher stresses are avoided by
other ways, for e.g., changing the geometry of the optimal structure. The result
is supported by making a comparison between solutions to FMO problem and
the classical Variable Thickness Sheet (VTS) problem in [15].
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The stress constraints in FMO defined in e.g. [15] are highly nonlinear involv-
ing the design variable stiffness tensor. This makes the level of the difficulty to
solve stress constrained FMO problems even worse. The stress constrained FMO
problems in [15], [17], and [16] are solved with the method based on Augmented
Lagrangian function in [14] and [24]. The problems in [11] are solved by one of the
recent methods based on sequential convex programming developed in [27, 26].
The method in general requires large number of iterations. The original setting
of the problems were approximated by problems where the stress constraints are
removed and added to the objective function using a penalty term. The solutions
to the new approximation problems are of high quality. However, the feasibility
tolerance of the stress constraint is moderate.

The focus of this article is on FMO formulations with constraints on local
stresses. As far as to our knowledge there are no analogous FMO formulations
with stress constraints for laminated structures. In [32], FMO problems for lami-
nated plates and shells are proposed based on the formulations in [9]. One of the
objective of this article is to introduce constraints on local stresses to these for-
mulations and propose FMO problem formulations with local stress constraints
for laminates.

The necessary condition for physical attainability of the stiffness tensor results
in matrix inequalities in the optimization problem. Therefore, FMO problems
belong to a class of SemiDefinite Program (SDP). Recently, an efficient primal-
dual interior point method with special purpose to FMO problems is developed in
[33]. The method is generalized for FMO models for laminated plates and shells
in [32]. It exploits the special structure that FMO problems have many but small
matrix inequality constraints. Solutions are reported to the largest classical FMO
problems solved to date. It requires a modest number of iterations that almost
does not increase with problem size. The second objective of this article is to
show that a slightly modified version of this method can successfully solve the
stress constrained problems of this article. The stress constraints are treated in
the algorithm keeping their original settings in the problem formulations. The
numerical experiments show that the solutions are obtained in moderate number
of iterations with higher accuracy.

The organization of the article is as follows. In Section 2 we formulate the
finite dimensional FMO problems with stress constraints for both solid and lam-
inated structures. In Section 3 we present the implementation of the algorithm
and the slight modification introduced to the method described in detail in [33].
We report and explain the results of the performed numerical experiments in
Section 4. The conclusions and possibly future research works are presented in
Section 5.
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2 Problem formulations

In this section we present FMO problem formulations with stress constraints for
solid and laminated plate and shell structures. In both cases we start with the
discrete version of the classical minimum compliance (maximum stiffness) and the
minimum weight FMO formulations. For details on the problem formulations and
finite element discretization, see [27] and [17] for solid structures, and [32], [9],
and [4] for laminated structures.

It is pointed out in e.g. [15] that addressing stress constraints in structural
optimization using FMO is a challenge. In the first place, there is no existing gen-
eral failure criterion. The realization of the optimal structure is also important
in using one of the several existing failure criteria, for example see [12] for dif-
ferent failure criteria in fiber reinforced composites. Moreover, in FMO material
properties are also design variables giving conceptual optimal designs. Despite
these challenges we follow the measure proposed in [15] which is the norm of the
stresses integrated over the finite element in the discrete problems.

In FMO problem formulations the requirement of the physical attainability of
the stiffness tensor is introduced by matrix inequality constraints. As a measure
of stiffness the trace of the elastic stiffness tensor is used. It is locally bounded
from above by ρ̄ to avoid arbitrarily stiff materials and from below by ρ̄ to limit
the extent of softness. These bounds must satisfy the relation 0 ≤ ρ < ρ̄ < ∞.
We consider nL given external static nodal load vectors f` ∈ Rn, where ` ∈
L = {1, . . . , nL} and n is the number of finite element degrees of freedom. We
prescribe weights w` for the loads f` satisfying

∑
` w` = 1 and w` > 0 for each

` ∈ L.
Next, we present the FMO problems with local constraints for solids and lam-

inated structures. In both cases we follow similar approach. We first formulate
the problems without stress constraints. Then, we define the stress constraints
and include in the unconstrained problems to formulate the stress constrained
FMO problems.

2.1 FMO for solid structures

This section is essentially identical to the corresponding section in [33] and is
included for completeness. We consider a design domain Ω partitioned in to m
uniform finite elements Ωi for i = 1, . . . ,m. The elastic stiffness tensor E(x)
is approximated by a function that is constant on each finite element with its
element values making the vector of block matrices E = (E1, . . . , Em)T . For any
given external static nodal load vectors f`, the associated displacement u` must
satisfy the linear elastic equilibrium equation

A(E)u` = f`, ` ∈ L, (1)
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where the stiffness matrix A(E) is given by

A(E) =

m∑
i=1

Ai(E), Ai(E) =

nG∑
k=1

BT
i,kEiBi,k. (2)

The matrices Bi,k are (scaled) strain-displacement matrices computed from
the derivative of the shape functions and nG is the number of Gaussian integration
points, see e.g. [6].

We define the set of admissible materials Ẽ by

Ẽ :=
{
E ∈ (Sd+)m|ρ ≤ Tr(Ei) ≤ ρ̄, i = 1, . . . ,m

}
(3)

where the space Sd+ is the cone of positive semidefinite matrices in the space Sd
of symmetric d × d matrices, i.e., Ei ∈ Sd+ if and only if Ei = ET

i and Ei � 0.
The exponent d takes the value 3 for two-dimensional problems and 6 for three-
dimensional problems.

Next, we formulate FMO problems for solids without stress constraints. The
primal minimum compliance FMO problem is formulated as

minimize
u`∈Rn,E∈Ẽ

∑
`∈L

w`f
T
` u`

subject to A(E)u` = f`, ` ∈ L,
m∑
i=1

Tr(Ei) ≤ V.

(4)

The constant V > 0 is an upper bound on the amount of resource material to
distribute in the structure and satisfies the relation

m∑
i=1

ρ < V <

m∑
i=1

ρ.

The primal minimum weight FMO problem is

minimize
u`∈Rn,E∈Ẽ

m∑
i=1

Tr(Ei)

subject to A(E)u` = f`, ` ∈ L,
L∑
`=1

w`f
T
` u` ≤ γ.

(5)

The weighted multiple load non convex FMO problems (4) and (5) are of Si-
multaneous ANalysis and Design (SAND) formulation without stress constraints.

5



Theories and methods for problems (4) and (5) and/or their minimax formula-
tions have been extensively studied in several articles, see [28], [28], [34] and the
references therein. By applying the Schur complement theorem the problems
can be written as linear problems, but result in large matrix inequalities that can
hardly be handled computationally [17]. Under the mild assumption E � 0 on the
elastic stiffness tensor the stiffness matrix A(E) is nonsingular [28]. Therefore,
by solving the displacement in the equilibrium equation (1), it can be eliminated
from the problems (4) and (5) and then equivalent nested convex formulations
can be derived. The SAND formulations are the preferred choices in this article.
This is due to the numerical experiments in [33] and it is more convenient to
track numerically the stress constraints in the SAND formulations than in the
nested formulations for a second order method.

Now, we introduce the stress constraints. We determine the norm of the stress
due to the load f` integrated over ith element by

‖σi,`‖2 :=

∫
Ωi

‖σ`‖2dΩ =

nG∑
k=1

‖EiBiku`‖2. (6)

We then include in problems (4) and (5) the constraints on local stresses

‖σi,`‖2 ≤ s`, for each ` ∈ L and i = 1, ...,m. (7)

The upper bound s` is estimated first by solving the corresponding unconstrained
problems (4) and (5) and scaling the maximum stress norm by a factor k ∈
(0, 1),i.e.,

s` = kmax
i
{‖σi,`‖2}. (8)

The existence of optimal solution to the stress constrained FMO problems is
shown in [11] under natural assumptions.

2.2 FMO for laminated pates and shells

This section is mostly adopted from Subsection 2.3 of [32] and is included for
the completeness and ease of readability. In laminated structures mechanical
properties are usually determined with respect to a reference midsurface, denoted
by ω. In order to formulate the finite dimensional problem, ω is partitioned in to
m uniform finite elements ωi for i = 1, . . . ,m. As in the case of solid structures
the plane-stress in-plane elastic stiffness tensor C and transverse tensor D are
approximated by functions constant on each element in each layer. The ith
element values of the stiffness tensors C and D on the lth layer are denoted by
by Cil and Dil respectively.
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Given external static nodal load vectors f` the resulting displacement (u,θ)`
(translational and rotational) satisfies the elastic equilibrium equation

K(C,D)(u,θ)` = f`, ` ∈ L, (9)

where K(C,D) the stiffness matrix is given by

K(C,D) =

m∑
i=1

(Kγ
i (C) +Kγχ

i (C) + (Kγχ
i (C))T +Kχ

i (C) +Kζ
i (D)). (10)

The element stiffness matrices in (10) are given by

Kγ
i (C) =

∑
l,(j,k)∈ni

∫
ωi

til(B
γ
jl)

TCilB
γ
kldS (11a)

Kγχ
i (C) =

∑
l,(j,k)∈ni

∫
ωi

t̃il(B
γ
jl)

TCilB
χ
kldS (11b)

Kχ
i (C) =

N∑
l,(j,k)∈ni

∫
ωi

˜̃til(B
χ
jl)

TCilB
χ
kldS (11c)

Kζ
i (D) = κ

∑
l,(j,k)∈ni

∫
ωi

til(B
ζ
jl)

TDilB
ζ
kldS, (11d)

where ni is the index set of nodes associated with the element ωi. The matrices
Bγil, B

γ
il and Bζi,l are the (scaled) strain-displacement matrices for membrane

strains, for bending strains, and for shear strains, respectively. The factors til,

t̃il and ˜̃til are computed as

til = tbil − tail, t̃il =
1

2
((tbil)

2 − (tail)
2),

˜̃til =
1

3
((tbil)

3 − (tail)
3), (12)

where tbil and tail the upper and lower transverse coordinates of the lth layer at
the center of the element ωi. The coefficient κ < 1 appearing in the shear term in
(11d) is the shear correction factor. This is to take into account the shell model
which is used in applications.

Given that the laminate has N number of layers we define the set of admissible
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material Ẽ by

Ẽ =

{
(C,D) ∈ (S3+)mN × (S2+)mN

∣∣∣∣
ρ ≤ til

(
Tr(Cil) + 1

2Tr(Dil)
)
≤ ρ̄, i = 1, . . . ,m, l = 1, . . . , N

}
. (13)

Now, we formulate the unconstrained problems. The primal minimum com-
pliance FMO formulation is then stated as

minimize
(u,θ)`∈Rn,(C,D)∈Ẽ

∑
`∈L

w`(f`)
T (u,θ)`

subject to K(C,D)(u,θ)` = f`, ` ∈ L,
m∑
i=1

N∑
l=1

til

(
Tr(Cil) +

1

2
Tr(Dil)

)
≤ V,

(14)

with the volume bound V > 0 satisfying

N∑
l=1

m∑
i=1

ρ < V <

N∑
l=1

m∑
i=1

ρ.

The discrete primal minimum weight FMO formulation is

minimize
(u,θ)`∈Rn,(C,D)∈Ẽ

m∑
i=1

N∑
l=1

til

(
Tr(Cil) +

1

2
Tr(Dil)

)
subject to K(C,D)(u,θ)` = f`, ` ∈ L,∑

`∈L

w`(f`)
T (u,θ)` ≤ γ.

(15)

Next, we present our motivation for the type of stress constraints that we intro-
duce to the problems (14) and (15).

It is known from mechanics of laminated structures that stresses vary across
the thickness of the laminate with linear variation within a layer (we are talking
about linear elasticity). Therefore, we make two stress evaluations in each layer
over each element ωi, at the top and lower transverse coordinates of the layer.
This allows us to capture the stress extremities within each layer and each ele-
ment. We follow similar approach proposed for solids and make these evaluations
by the integral form of stresses, i.e., analogous to (6). The stress due to the load
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f` on the ith element at the bottom of the lth layer is

‖σail,`‖2 :=

∫
ωi

‖σal,`‖2dω =

nG∑
k=1

(
‖Cil(Bγ

ikl(u,θ)` + tailB
χ
ikl(u,θ)`)‖

2 + ‖DilB
ζ
ikl(u,θ)`‖

2
)
.

and the top of the lth layer is

‖σbil,`‖2 :=

∫
ωi

‖σbl,`‖2dω =

nG∑
k=1

(
‖Cil(Bγ

ikl(u,θ)` + tbilB
χ
ikl(u,θ)`)‖

2 + ‖DilB
ζ
ikl(u,θ)`‖

2
)
.

Then, we propose the following stress constraints for laminated plates and
shells

‖σail,`‖2 ≤ s`, ` ∈ L, i = 1, ...,m, and l = 1, ..., N,

‖σbil,`‖2 ≤ s`, ` ∈ L, i = 1, ...,m, and l = 1, ..., N,
(16)

with the value of s` is determined as in (8).
In [9], FMO problem formulations with similar structures to the problems

(14) and (15) but for a single layer are studied and existence of optimal solution
is proved. However, there is no sufficient theoretical background in the literature
to guarantee the result for multilayer laminates. The case is even worse when the
stress constraints in (16) are included to these problems. The theoretical aspect
of these problems need to be further investigated. Any outcome of this article
regarding the stress constrained FMO problems for laminates is only the result
of numerical experiments.

3 Optimization method and implementation

The FMO problems (4), (5), (14), and (15) all have linear objective functions with
matrix inequalities and nonlinear (and non convex) vector constraints. Therefore,
they are classified as non convex SDPs. In general, FMO problems tend to
be large-scale problems for a reasonable mesh size. This is because the design
variable is the stiffness tensor at each point of the design domain. However,
the special property that the matrix inequalities are small (but many) can be
exploited with a special purpose optimization method. An efficient primal-dual
method with special purpose to FMO is developed in [33]. The method has shown
success in solving by far the largest FMO problems of formulations in (4) and (5)
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and some other equivalent formulations. It is also generalized in [32] to solve the
FMO problems for laminates of the formulation in (14).

Stress constrained structural optimization problems are in general difficult
problems to solve and usually computationally expensive. The problems may
not also satisfy constraint qualifications [1], stated as singularity phenomenon
in [13]. The stress constraints for FMO problems in (7) and (16) are highly
nonlinear in the stiffness tensor and displacement. Hence, the challenge in the
handling of computations and finding accurate solutions rises to a complex issue
in FMO problems with stress constraints.

In this article we slightly modify the primal-dual interior point method de-
veloped in [33] and [32] to solve the stress constrained problems. We employ a
perturbation to the the coefficient matrix of the saddle point system that results
during applying Newton’s method to solve the optimality conditions. This is
based on inertia controlling methods [19, 8, 31] to ensures that a search direction
gives a decrease in the merit function chosen in the algorithm.

The stress constraints are treated in the algorithm directly keeping their orig-
inal settings in (7) and (16). In other studies these are often moved to the ob-
jective function using a penalty term [27, 26]. The code is entirely implemented
in MATLAB. The standard QUAD4 bilinear elements obtained by full Gaussian
integration are considered for the two-dimensional problems. For the laminate
problems we consider the standard quadrangular CQUAD4 elements with six
degrees of freedom per node with full Gaussian integration layer wise and ex-
plicit integration over the thickness. The overview of algorithmic parameters are
described in [33] and [32].

4 Numerical experiments

For the numerical experiments we consider the minimum compliance problems
(4) together with stress constraints (7) for two-dimensional problems, and (14)
together with the stress constraints (16) for problems on laminated structures.
The total weight fraction is set to 40% of the maximum possible weight and the
bounds on the traces of the stiffness tensors are scaled such that ρ̄/ρ = 105.

Through out this section we use the color scale with limits ρ and ρ̄ given in
Figure 1 for all plots of the optimal density distribution. We use own color scales
for plots of optimal stress norms to easily show high stresses in the unconstrained
problems and regions of active stress constraints in the constrained problems.
Note that the labels of the color bar are the norm of the stresses, not the norm
of the stresses squared, as used in Table 3. For the two-dimensional Examples
4.1 and 4.2 we also report the principal stress directions which are computed as
principal eigenvectors associated to the Voigt-stress tensor.
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Figure 1: Color bar for the plots of optimal density distribution.

There are five examples in this section. The first two examples are for two-
dimensional problems and the last three examples are for laminated structures.
In Example 4.1 we consider L-shaped design domain of dimension (normalized)
1×1 and a quarter removed from one of the corners. In Example 4.2 we consider
a Michell beam problem on a rectangular design domain of dimension 2× 1. For
the examples on laminates we consider a laminate spanning a region of dimension
1×1 for the clamped plates in Examples 4.3 and 4.4, and 1×8 for the shell beam
in Example 4.5. The ratio of the thickness to the shortest dimension is 0.01 and
is distributed evenly for layered laminates. Layers are numbered in the thickness
direction from bottom to top. The problem instances are presented in Tables 1
and 2.

The numerical results are reported in Table 3 listing some comparisons be-
tween solving the constrained and unconstrained problems. The optimality tol-
erances are the norm of the fist-order optimality conditions measured without
perturbation on the complementarity conditions. By feasibility tolerances we
also refer ot the feasibility of the stress constraints in the original problem set-
tings (7) and (16). Looking at the numerical values the active stress constraints
are feasible with high accuracy. The solutions to the unconstrained problems
are obtained within 30 and 61 iterations where as within 85 and 142 for the
constrained problems. This can be considered as modest taking in to account
that the problems are nonlinear SDPs. Moreover, the number of iterations is
modest compared to the results in other literatures, see for example [16] for two
dimensional, and [11] for three-dimensional problems. The increase in the num-
ber of iterations in solving the constrained problems is expected since the stress
constraints are nonlinear involving matrix variables. It is common practice in
structural optimization that stresses are reduced at the cost of an increase in
compliance. This is also shown in Table 3 for FMO problems. However, the
surprising outcome from the numerical experiments is that compliances are wors-
ened not significantly in FMO. In all examples the increase in compliance is less
than 5% while stresses are reduced by more than 50%

In all cases, higher stresses near the fixed or loaded regions in the uncon-
strained problems are avoided in the constrained problems. For a physically
meaningful chosen values of the scaling factor k in (8), the stress constraints are
found to be active in wider stiff regions of the optimal designs in the constrained
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Figure 2: Design domain, boundary condition, and external load for the L-shape
design domain.

problems. The similarity between the optimal density distributions for the con-
strained and unconstrained problems imply that stresses are primarily reduced
in FMO by changing material properties. The case is different in other structural
optimization approaches where material properties are fixed which and there is
less freedom than in FMO. Therefore, the stresses are reduced by other means
such us changing the geometry of the topology. Similar results can be found in,
e.g., [15], [16], and [17].

Example 4.1. We consider the two-dimensional FMO problem on L-shaped de-
sign domain from [15], see Figure 2. When solving the problem without stress
constraints, we can see the much higher stresses around the reentrant corner,
Figure 4a. This is actually typical example giving stress singularity in the reen-
trant corner. For this case we can allow least value of the scaling factor k in (8)
than in the rest of the examples of this article. It can be seen in Figure 4b the
high stresses are avoided. However, looking at the optimal density distributions
in Figure 3 the difference is not that big. The higher stress are reduced by re-
inforcing the reentrant corner with materials forming smooth-like arcs, see the
zoom-in Figure 5b of the region. In general, these results closely agree with the
results in [15].

Example 4.2. In this example we consider the classical two-dimensional Michell
beam problem as shown in Figure 6. In the solution to the unconstrained problem
there are higher stresses around the two ends of the fixed edge, see Figure 8a.
These stresses are reduced in the constrained problem, Figure 8b. Similar to the
previous example, there is no much difference in the optimal density distributions
between the solutions to the constrained and unconstrained problems, see Figure
7. The reduction of the higher stresses is mainly accomplished by changing
the material directions around these regions. The direction changing materials
around these regions in Figure 9a in the unconstrained problem are replaced by
unidirectional-like materials in Figure 9b in the constrained problem.
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(a) (b)

Figure 3: Optimal density distributions of the L-shape problem, (a) without
stress constraints, (b) with stress constraints.

(a) (b)

Figure 4: Optimal stress norms for the L-shape problem, (a) without stress
constraints, (b) with stress constraints.
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Figure 5: Optimal principal stresses around the reentrant corner for the L-shape
problem, (a) without stress constraints, (b) with stress constraints.

Figure 6: Design domain, boundary condition, and external load for the Michell
beam problem.

(a) (b)

Figure 7: Optimal density distributions for the Michell beam problem, (a) with-
out stress constraints, (b) with stress constraints.
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(a) (b)

Figure 8: Optimal stress norms for the Michell beam problem, (a) without stress
constraints, (b) with stress constraints.
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Figure 9: Optimal principal stresses around the upper left corner for the Michell
beam problem, (a) without stress constraints, (b) with stress constraints.
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Figure 10: Design domain, boundary condition, and external load for the clamped
plate with pressure load.

Example 4.3. We consider a clamped plate of eight layers loaded uniformly,
see Figure 10. In this case the optimal solution corresponds to a sandwich-
like symmetric laminate. Therefore, we report results only for the bottom four
layers. Looking at the density distributions in Figure 11, we notice a slight
visible difference in the middle four layers where some more materials are used
around the fixed regions in the constrained problem than in the unconstrained
problem. Figure 12 shows that there are higher stresses in the surface layers
mainly concentrated around the fixed four edges of the plate. These are controlled
to be within the limit in the constrained problem, Figure 13.

In our model we follow the First Order Deformation Theory (FSDT), see
[21], in which the out-of-plane shear stresses are taken in to account. Unlike
the two-dimensional problems, reporting the mechanism by which high stress
are avoided is not straight forward for laminates. Hence, the realization of the
solutions to FMO problems for laminates needs further investigation. This applies
to examples 4.3, 4.4 and 4.5 of this article.

Example 4.4. We consider a similar case as example 4.3, a clamped laminate
of eight plate layers but with the load concentrated at the center, see Figure 14.
This is to consider a situation where local higher stresses are located around the
loaded area. The solution again gives a sandwich-like symmetric laminate with
the stiff area around the center appearing in all layers. The plots are for the first
four layers. In the unconstrained problem we can see from Figure 16 that there
are higher stresses in a small region around the center and mainly in the surface
layers. These are avoided in the constrained problem 17 and all layers around
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(a)

(b)

Figure 11: Optimal density distributions of the first four layers for the clamped
plate with pressure load, (a) without stress constraints, (b) with stress con-
straints.
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(a)

(b)

Figure 12: Optimal stress norms of the first four layers for the clamped plate
with pressure load without stress constraints, (a) at the lower surfaces, (b) at the
upper surfaces.
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(a)

(b)

Figure 13: Optimal stress norms of the first four layers for the clamped plate
with pressure load with stress constraints, (a) at the lower surfaces, (b) at the
upper surfaces.
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Figure 14: Design domain, boundary condition, and external load for the clamped
plate with a point load at the center.

this region are involved in carrying the reduced stress. The density distributions
are more or less similar, Figure 15.

Example 4.5. In this example we solve a two load case problem on a shell beam
clamped at both ends loaded as in Figure 18. We report the plots for the optimal
stress norms of the outer surface for one of the loads. The other cases can easily
be determined from these plots. The higher stresses around the loaded region
shown in Figure 20a in the unconstrained problem are avoided in the constrained
problem, see Figure 20b. There is no clear difference in the topology of the
optimal density distributions, Figure 19.

5 Conclusions

We introduce stress constraints to the FMO models proposed by the authors in
[32] for laminated plates and shells for the first time. We extend the efficient
primal-dual interior point method initially developed in [33] for solids and latter
generalized in [32] for laminates to solve these stress constrained FMO problems.
In the numerical experiments the high stresses in the unconstrained problems
which occur mostly near the fixed or loaded areas are reduced in the constrained
problems. The feasibility of the stress constraints is higher than we find in other
articles (literatures are available only for solids). The number of iterations re-
quired to obtain solution to the problems of this article is between 85 and 142.
This is modest considering the highly nonlinearity of the stress constraints and
non-convexity of the problems. The efficiency of the method is implied indeed.
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(a)

(b)

Figure 15: Optimal density distributions of the first four layers for the clamped
plate with load at the center, (a) without stress constraints, (b) with stress con-
straints.
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(a)

(b)

Figure 16: Optimal stress norms of the first four layers for the clamped plate
with load at the center without stress constraints, (a) at the lower surfaces, (b)
at the upper surfaces.
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(a)

(b)

Figure 17: Optimal stress norms of the first four layers for the clamped plate
with load at the center with stress constraints, (a) at the lower surfaces, (b) at
the upper surfaces.
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Figure 18: Design domain, boundary condition, and external load for the shell
beam.

(a) (b)

Figure 19: Optimal density distributions for the shell beam, (a) without stress
constraints, (b) with stress constraints.
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(a) (b)

Figure 20: Optimal stress norms for the shell beam, (a) without stress constraints,
(b) with stress constraints.

There are two special behaviors that we observed from the numerical exper-
iments. There are (usually) only small differences in the density distributions
of the solutions to the constrained an unconstrained FMO problems. This is
because in FMO there is more freedom that it is possible to change material
properties to avoid the high stresses. This actually contradicts to the practice in
classical topology optimization with isotropic materials where the materials are
fixed. The second behavior is that we see different practice regarding the compli-
ance in FMO than in other structural optimizations. The values of compliances
are only a little relaxed with less than 5% in the constrained problems even when
the norm of the stresses are reduced by more than 50%.

We point out two future research areas. The first one is to analyze solutions to
FMO problems on laminates. This will give a direction to identify the way stresses
are reduced in FMO approach to laminates. The second future research work is
on improving the computational efficiency of the algorithm. Stress constraints
are in most cases active only in a certain regions in the design domain. Therefore,
treating these constraints over the entire design domain in the algorithm is not
numerically efficient. The algorithm can be improved by introducing active set
technique where inactive stress constraints are removed during the optimization
process.
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[17] Kočvara, M., Stingl, M., Zowe, J.: Free material optimization: recent
progress. Optimization 57(1), 79–100 (2008)

[18] Le, C., Norato, J., Bruns, T., Ha, C., Tortorelli, D.: Stress-based topology
optimization for continua. Structural and Multidisciplinary Optimization
41, 605–620 (2010)

[19] Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, NewYork, NY,
USA (1999)
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