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A computational study of the effect of microstructure of hybrid carbon/glass fiber composites on their
strength is presented. Unit cells with hundreds of randomly located and misaligned fibers of various
properties and arrangements are subject to tensile and compression loading, and the evolution of fiber
damages is analyzed in numerical experiments. The effects of fiber clustering, matrix properties, nanore-
inforcement, load sharing rules on the strength and damage resistance of composites are studied. It was
observed that hybrid composites under uniform displacement loading might have lower strength than
pure composites, while the strength of hybrid composites under inform force loading increases steadily
with increasing the volume content of carbon fibers.
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1. Introduction

Hybrid composites attract a growing interest of scientific com-
munity, among others, with view on their application as wind
blade materials. While the glass fibers are relatively cheap and eas-
ily available, polymer composites with carbon fiber reinforcement
show much higher stiffness, tensile strength and lower weight
than those with glass fiber reinforcement. The disadvantages of
carbon fibers are their high price and relative low compressive
strength. So, the idea to combine these two groups of fibers to
achieve the advantages of both and to reduce the weaknesses of
each of them was formulated. As noted by Ong and Tsai [2], the full
replacement of glass fibers by carbon fibers for a given 8 m blades
would lead to 80% weight savings, and cost increase by 150%, while
a partial (30%) replacement would lead to only 90% cost increase
and 50% weight reduction. In a number of works, the strength
and damage mechanisms of hybrid composites were studied
[1–7]. It was reported, among others, that the incorporation of
glass fibers in carbon fiber reinforced composites allows the
improvement of their impact properties and tensile strain to failure
of the carbon fibers. Apparently, hybrid composites have a great
potential for the energy and structural applications.

Apart from hybrid structures, there exist several other promis-
ing directions to enhance the strength, damage resistance and life-
time of fiber reinforced composites by varying their
microstructures: clustering of fibers and hierarchization of micro-
structures, nanoreinforcements in matrix and on the fiber/matrix
interfaces, oriented nanoreinforcements, various distributions of
fibers in clusters, modifications of matrix properties [8].

The question arises – how do these modifications of microstruc-
tures influence the damage resistance of composites, alone or in
combinations? Which arrangements of fibers and reinforcements,
and which combinations of properties ensure the optimal service
properties of the material?

In this paper, we seek to investigate numerically the effect of
the microstructural modifications (like fiber mixing, clustering,
nanoreinforcements and matrix modification) on the damage resis-
tance of the composites under both tensile and compression load-
ing. In so doing, we use statistically generated unit cells with
hundreds of randomly located and misaligned fibers with various
properties and arrangements. These unit cells are subject to tensile
or compression loading, and the evolution of fiber damages is ana-
lyzed. Using the Weibull condition of fiber cracking and (for the
special case of carbon fiber compression) Budiansky–Fleck kinking
condition [9], we calculate the amount of failed fibers and analyze
the microstructure–damage relationships for different materials.
As a result, we seek to determine which factors and parameters
can be used to enhance the composite strength and damage
resistance.

2. Simple fiber bundle based model of hybrid composite

In this section, we present a simple modeling approach for the
numerical testing of various microstructures of UD composites un-
der axial loading. This includes the automatic unit cell generation
code, the simplified estimation of the elastic properties of embed-
ded fibers and the load redistribution/damage estimation methods.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2013.08.024&domain=pdf
http://dx.doi.org/10.1016/j.commatsci.2013.08.024
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2.1. Generation of the unit cell with various fiber distributions

For the numerical analysis, a computer program ‘‘HybridFib’’
was developed, which generates interactively unit cells with a
pre-defined amount, arrangement and properties of fibers.

Using the Monte-Carlo method, a given amount of fibers are as-
signed carbon or glass properties, and they are randomly arranged
in the cells, using the RSA (random sequential absorption) algo-
rithm [10–12] (i.e., the location of a fiber is calculated by random
number generator, and the programs checks whether any other fi-
bers are located too close; if yes, the next random number/location
is generated, and so on), or, alternatively, clustered. Depending on
this type, the radius of the fiber and its elastic and strength prop-
erties (Weibull parameters) were determined. Further, the mis-
alignment angles are assigned to each fiber, using random
normal number generator (with truncated Gaussian probability
distribution, from �5� to 5�) [10,12]. The clustered arrangement
of fibers was generated following the algorithm from [9,14]. First,
the given amount of cluster centers was arranged randomly inside
the cell, with pre-defined minimal distance between them. Then,
the fibers were placed close to the cluster center, using the nor-
mally distributed parameter (distance between particle center
and cluster center) and uniformly distributed angles between the
line from the particle to cluster center, and the vertical. In this
code, the minimal allowed distance between the cluster centers
was 2.7L/m, where L is the unit cell size and m is the total amount
of clusters. The variance of the normal distribution of the distances
between the particle centers and the cluster center was taken
0.0012 mm, to ensure rather close location of the particles near
the cluster center [13].

Also, several more complex fibers arrangements have been de-
signed to investigate the combined effect of fiber clustering and
the mixing on the damage resistance, among them:

(1) ‘‘Segregated’’ clusters: the fibers are arranged in clusters, each
cluster contains either only carbon or only glass fibers.

(2) ‘‘Mixed’’ clusters: in this case, we consider two cases, ‘‘outer
strong/inner weak’’ (where carbon fibers are located on the
outer border of each cluster, while glass fibers near the cen-
ter of clusters) versus ‘‘inner strong/outer weak’’ clusters.

Fig. 1a shows an example of a ‘‘segregated’’ structure of the com-
posite. Fig. 1b shows ‘‘mixed’’ types of microstructures: carbon fi-
bers in the centers of clusters, glass fibers outside, and, inverse
case, glass fibers inside the clusters, carbon is outside. The struc-
tures shown on these figures have 250 fibers, the amount of fibers
is equal (125/125), and the total volume content of fibers is 25%.

Then, the unit cells were subject to axial loading, either tensile,
compressive or repeated. For each fiber, the fiber cracking or kink-
ing condition is checked, using the corresponding Weibull criterion
(for tensile or compressive cracking) or using the Budiansky–Fleck
condition for kinking [9]. The loadings were carried out in ‘‘slow’’
regime (i.e., after a fiber is failed, the stress on the remaining fibers
increases instantly according to the ‘‘effective stress concept’’ and
‘‘load sharing rule’’, and so on for all the fibers which fail succes-
sively one after another [9]).

2.2. Calculation of stresses on fibers

Let us consider the unit cell of N slightly inclined (in average,
vertical) fibers subject to vertical displacement (strain e). The prob-
ability of a failure (or, fraction of failed fibers) is determined using
the Weibull distribution:

D ¼ Probfr P rcrg ¼ 1� exp � r
rcr

� �m� �
; ð1Þ
here rcr, m – Weibull parameters. Let us estimate the stress r in a
given fiber. Following [9,15–17], we assume that the applied strain
is a constant, and the stress on a given fiber is therefore a function
of local elastic properties:

rloc ¼ Elocale ð2Þ

(as noted below, the value Elocal is a function of the local fiber
misalignment).

As a result of the load sharing (e.g., due to the fiber failure), the
local stress increases by some value Dr. Thus, we can write for the
stress on a fiber:

r ¼ Eloceþ Dr; ð3Þ

For the case of the uniform force loading, the stress on all the
fibers was assumed to be constant at the beginning, and redistrib-
uted when fibers begin to fail.

Using the three-fiber model with one broken fiber, and repre-
senting the third remaining intact fiber as a cluster of fibers, one
can calculate the increase of local stress due to the load sharing
Dr as [18]:

Dr ¼ rloc
A0E0

RANEN
F ð4Þ

where A0, E0, AN, EN – cross-sectional area and Young modulus of the
broken fiber (0) and all the intact fibers (N), F – load transfer factor.
For F, one can use the following formulas from as a first approxima-
tion [18]:

F ¼ 1
p

sin�1 ri

di

� �
ð5Þ

where ri and di – fiber radius and inter-fiber separation for a given i-
th fiber. This approximation gives almost linear relationship be-
tween the interfiber distance and F.

Another approach to simulate the load sharing is presented in
[9], and includes the power load sharing law:

r / r�k; ð6Þ

where r is the stress on a given fiber, r the distance between a failed
and the considered fiber, k the power coefficient. In our simulations,
we used the power loading sharing law. Following [9], we have cho-
sen the power coefficient �2 in the simulations. Still, the effect of
the coefficient of load distribution on the damage evolution will
be studied separately below.

2.3. Estimation of elastic modulus of an embedded misaligned fiber

Let us estimate the elastic modulus for a single misaligned (in-
clined) fiber embedded into the matrix. The embedded fiber can be
presented as an inclined cylinder in a hexagon. In order to simplify
the model, we transform the cell in the following way: the cylindri-
cal fiber is replaced by an equivalent form with squared section
and the same volume content in the cell. Then, the cell is divided
into the vertical parts without fibers and the vertical part contain-
ing fiber as shown in [19].

The replacement of the cylindrical fiber by a fiber with squared
section allows us to use the formula for Young modulus (in the ver-
tical direction) of a laminate with inclined fiber [19]:

Eelt ¼ sin4 b=EL þ
1

Glt
� 2mlt

EL

� �
sin2 b cos2 bþ cos4 b=Et

� ��1

ð7Þ

where EL = Efvcloc + Em(1 � vcloc); Et = EfEm/EL; mlt = mf vcloc + mm

(1 � vcloc); Glt = GfGm/[Gfvcloc + Gm(1 � vcloc)], Ef, Em, EL, Et – Young
modulus of fiber, matrix, Reuss and Voigt averaged values, mf, mm,
Gf, Gm – Poissons ratio and shear modulus for fiber (f) and matrix



Fig. 1. Fiber arrangement in clustered hybrid composite: (a) ‘‘Segregagated’’ microstructure, (b) mixed structure, carbon fibers in the centers of clusters, glass fibers outside,
and (b) inverse case.
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(m) materials, vcloc – volume content of fiber material in the vertical
part, containing the fiber.

Applying the rule of mixture, we can write the formula for the
vertical stiffness of the composite with inclined cylindrical fiber
and given volume content of fibers:

Edisc ¼
Eeltah2

= tan bþ Emð3:464hr2 � ah2
= tan bÞ

3:464hr2 ð8Þ

or

Edisc ¼
Eeltah

3:464r2 tan b
þ Emð1� ah=3:464r2 tan bÞ

here h is the height of the unit cell, VC the volume content of
fibers in the composite, and b is the angle of the fiber axis with
the horizontal plane, a the linear size of the section of the equiva-
lent quadratic fiber, a ¼ ðvc�v�hex sin b=hÞ1=2, vhex the volume of the
hexagon (part of volume containing the fiber), vhex = 6hr2-

tg(30�) = 3.464hr2 = [6tg(30�)/p] vic = 1,102 vic, r and vic the radius
and the volume of inscribed circle/cylinder, h the section height.
The formulas (7) and (8) give the estimation of the Young modulus
of a composite (single fiber unit cell), depending on its
misalignment.
2.4. Material properties

In our simulations, we use the following properties of compo-
nents and materials considered:
� Carbon fibers: radius r = 7 lm; expected tensile strength
3000 MPa [20]; Young modulus 276 GPa; expected compressive
strength 2800 MPa, Poisson’s ratio 0.37; parameters of Weibull
distribution of tensile strength: scale parameter rcr = 2500 MPa
and shape parameter m = 6.1 and of compressive strength
rcr = 3700 MPa and m = 32 (for X5 fibers) [20].
� Glass fibers: radius r = 17 lm; expected tensile strength

2500 MPa; Young modulus 72 GPa; expected compressive
strength 1500 MPa, Poisson’s ratio 0.26; parameters of Weibull
distribution of tensile strength: rcr = 1649 MPa and m = 3.09
[21]. The Weibull parameters of the compressive strength dis-
tribution of glass fibers were estimated as follows. The shape
parameter m = 20 was taken from the experimental studies of
compressed pultruded flat sheets [22]. In order to estimate
the scale parameter rcr, we used the following relationship
between the average value and the scale parameter:
rav ¼ rcrCð1þ 1=mÞ ð9Þ
Given the estimated average compressive strength of glass fibers
1500 MPa, we can obtain the parameter rcr = 1500./
C(1.2) = 1500./0.9735 = 1540 MPa.

� Epoxy matrix: Young modulus 3.79 GPa; Poisson’s ratio 0.37;
and tensile strength 88 MPa [23].

According to the experiments, carried out at the DTU, Risø Cam-
pus, no matrix cracks were observed and should be taken into ac-
count in these simulations. The interface strengths and
misalignment distributions are the same for both types of fibers.
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The critical interface stress at which the debonding starts was ob-
served at the level of 25 MPa.

3. Effect of fiber distribution and properties, grouping and
clustering

In this section, we consider the combined effect of fiber cluster-
ing and the fiber mixing on the damage resistance of composites
under axial static loading, tension or compression.

3.1. Effect of mixing fibers; Static loading

Here, we compare the damage resistance of composites under
static loading for several cases: homogeneous random fiber distri-
bution with varied fraction of carbon fibers, clustered fiber distri-
bution with ‘‘segregated’’ fiber arrangement (each type of fibers–
carbon and glass – have their own clusters) and mixed fiber
arrangements (carbon and glass are mixed in the same clusters),
with various distributions (carbon fibers localized inside the clus-
ters while glass fibers form the borders of each cluster, and vice
versa).

Fig. 2 shows the critical stresses (at which the Young modulus
of composite is reduced by 50%) as a function of the fraction of car-
bon fibers, for tension and compression. The fibers are arranged
randomly, the volume content of fibers is set at 18% (calculated
as a basic volume content for an unit cell with 200 glass fibers).
One can see that the strength of composite under uniform dis-
placement loading decreases when the fibers are mixed, reaches
lowest point at the fraction of carbon fibers 40. . .50% (of all fibers)
Fig. 2. Critical stress (corresponding to D = 50%) plotted versus the fraction of
carbon fibers in hybrid: (a) tension, and (b) compression.
and then begins to grow sharply, to achieve the highest point for
pure carbon composite. There is a clear and strong difference be-
tween hybrid composites with glass and carbon fibers and pure
glass or carbon composites: fiber mixing leads always to the reduc-
tion the damage resistance under uniform displacement loading.
The effect of fiber mixing is different under uniform force loading:
in this case, the strength of composite increases with increasing
the content of carbon fibers, yet, this effect can be seen clearly only
at rather high fraction of carbon fibers.

The negative effect of the fiber mixing on the critical stress of
hybrid composites can be explained as follows. Under the axial
uniform displacement loading, the stiff, strong fibers bear much
larger load than other fibers (s. Eq (2)). If they still fail, the load is
redistributed over remaining intact fibers, not equally, but mainly
over the fibers close to the failed fiber (see Fig. 4). Thus, the remain-
ing intact fibers, often weaker ones (glass) bear even higher load
after the elimination of strong, bearing main load fibers, than in
the case of pure glass composite. That leads to the situation when
they fail even more intensively in this case. This can be seen in
Fig. 5b, right. Here, we can see only failed strong carbon fibers
in some clusters, or both failed carbon and glass fibers.

Under compression, adding carbon fibers leads to reduction of
the compressive strength of the composite for uniform force load-
ing, and (up to 60% content of carbon) for uniform displacement
compressive loading. As expected, the tensile strength is highest
for the pure carbon, while the compressive stress is highest for
pure glass composites.

The critical stress–carbon fraction curves show competing ef-
fects, between the higher stiffness of the composite (due to the in-
Fig. 3. Critical strain (corresponding to D = 50%) plotted versus the fraction of
carbon fibers in hybrid: (a) tension, and (b) compression.



Fig. 4. Uniform force tensile loading: glass fibers fail first then the carbon fibers
between ‘‘clusters of failed glass fibers’’.
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crease of carbon fraction) and apparently lower deformability of
carbon fibers. This effect can be seen more clearly on the critical
strain versus carbon content curves shown in Fig. 3. Here, the crit-
ical strain clearly decreases with increasing the fraction of carbon
fibers.

As expected, this decrease is especially clearly seen under com-
pression: while under tension, the critical strain of pure glass com-
posites is 2. . .2.4 times higher than that of pure carbon composite,
the critical strain of pure glass composite under compression is
5.7 times (under uniform strain) and even 10 times (under uniform
stress) higher than that of pure carbon composite.
3.2. Clustered fiber arrangement: ‘‘segregated’’ versus mixed

In this section, we seek to compare different types of clustered
fiber arrangements, in particular, ‘‘segregated’’ (i.e., when different
fibers are collected in different clusters) and mixed clusters. A
number of unit cells were generated and tested in the model.

Fig. 5 shows damage versus applied stress curves and the distri-
bution of damaged fibers at D = 0.5 for tensile loadings of hybrid
composites, with random and clustered fiber arrangements. Here,
‘‘damage’’ is defined as the relative reduction of the elastic proper-
ties of the material, and calculated as:

D ¼ Epost-loading

Eintact-material

where E is the Young modulus.
On Fig. 5, we can see again the clear difference for the uniform

displacement and uniform force loadings. For the uniform force
loading, the segregated clustered structures ensure the lowest
damage growth rate and highest strength, even higher than that
of random microstructures. For the uniform displacement loading,
the damage evolution in segregated microstructures goes more
intensively at low loadings than in other structures, yet, again, at
the higher loads, the strength of segregated structures is better
than that of other structures.

While the ‘‘segregated’’ structures show much slower damage
growth rate under uniform force, than under uniform displace-
ment loading, in both cases they ensure the strength of composite
higher than other clustered structures (by a few percents for strain
controlled, and by 8–14% for uniform displacement cases).

Fig. 5c and d give the distributions of failed fibers for uniform
displacement (c) and uniform force (d) loadings, both tension.
As can be seen on Fig. 5c, the failure of fibers is localized at early
stages of damage evolution inside each cluster, and that leads to
earlier start of damage growth (under the uniform displacement
loading of the ‘‘segregated’’ microstructures). In ‘‘mixed’’ struc-
tures, fibers in different clusters fail. For the uniform force loading,
the clusters of glass fibers fail much more intensively than the clus-
ters of carbon fibers.

For the given material parameters, no kinking of carbon fibers
was observed. All the carbon fibers (under compression) failed
due to cracking. Apparently, the kinking takes place only for a
weaker matrix or as a result of matrix damage.

Let us estimate at which damage degree in the matrix the fail-
ure mechanism in the carbon fiber/epoxy system changes from the
Weibull-controlled fiber cracking to the kinking (under compres-
sion). Estimating the average compressive strength of carbon fibers
with the formula (9), we see that the kinking becomes the main
mechanisms (at the given properties) if the shear modulus in ma-
trix is strongly damaged, and reduced by 3. . .4 times.

Further, we investigated the effect of the degree of localization of
fibers (in clustered structures) on the damage resistance of the
composite. Fig. 6 shows the kinking damage in a unit cell (under
the stress 1766 MPa) plotted versus the degree of the localization
of fibers, i.e. the amount of fibers in a cluster. It can be seen that
the larger distances between the clusters (i.e., higher fiber localiza-
tion) increase the damage resistance of the composite, apparently,
by preventing the ‘‘kinking infection’’ (i.e., when load is redistrib-
uted to neighboring fibers after one fiber failure, causing the neigh-
boring fiber failure).
3.3. Effect of load sharing coefficient

Here, we analyze the effect of the load sharing rule on the dam-
age evolution in composites. The stress concentration factor may
vary as a result of interface debonding, other nanoscale effects, de-
pends on matrix and interface properties. Let us consider the effect
of the power coefficient in the load sharing equation on the dam-
age evolution. We varied the power coefficient in the load sharing
equation from 0 (corresponds to global load sharing) to 25 (local
load sharing).

Fig. 7 gives the critical stress (at the 50% damage, or 50% stiff-
ness reduction of the composite) plotted versus the power coeffi-
cient for pure glass, pure carbon and 50/50 hybrid composite,
random fiber arrangement. The volume content of fibers was kept
at the level of 18%.

One can see from Fig. 7 that the strength increases with the
localization of load redistribution (i.e., with increasing the power
coefficient in the load sharing rule (6)). The increase is rather quick
when the power coefficient goes from 0 to �5 (i.e., from purely glo-
bal load sharing to localized load sharing), but remains constant or
almost constant in the range of power coefficients from �5 to �20.

It is of interest that the strength of composite increases drasti-
cally due to the variation of the load sharing power coefficient by
29. . .78%. This effect is especially strong for the mixed, 50/50% hy-
brid composites: the strength of the 50/50 composite increases by
36% and 78% in the cases of stress and uniform displacement load-
ing respectively, when changing the power coefficient from 0 to
�10. For the pure composites, the increase is (for carbon) 33%
and 29%, and (for glass) 55% and 29% (for stress and uniform dis-
placement loading respectively).

With view on all these conclusions, let us study the possible ef-
fect of ‘‘wrapping’’ fiber clusters, i.e. localization of load redistribu-
tion after fibers failure inside a cluster. In the ‘‘wrapped’’ bundle
(see Fig. 8), the load after a fiber kinks is not redistributed to fibers
in other clusters as long as there remain intact fibers in the ‘‘home’’
cluster. Fibers belonging to other bundles do not feel that the fiber



Fig. 5. Damage versus applied stress curves (a and b – strain and stress controlled, tension) and the distribution of damaged fibers at D = 0.5 (c, and d, top view) for the
loadings of hybrid composites, with clustered fiber arrangements: ‘‘segregated’’, and mixed. The volume content of all the fibers is set at 20%.
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kinked. Only when all the fibers in a cluster fail, the load is redis-
tributed to other clusters.

Fig. 9 shows the compressive damage versus applied stress
curves for the ‘‘wrapped’’ and ‘‘non-wrapped’’ clustered structures.
The simulations were carried out for pure carbon fibers composite
under compressive loading. One can see that the compressive
strength of the composite increases by 17%, due to the bundle
wrapping. This corresponds also to the results of the previous sec-
tion, in which we observed that the localized (inside the clusters)
damage growth (in ‘‘segregated’’ clusters) leads to the higher dam-
age resistance of the composite.

Summarizing, one can state that the strength of composites in-
creases with localizing the load distribution after the fiber failure.
This effect is more pronounced in non-clustered composites, be-



Fig. 6. Effect of the degree of fiber clustering on the kinking damage.

Fig. 7. Effect of load sharing coefficient on the damage evolution (tension) for pure
glass, pure carbon and 50/50 hybrid. Strain-controlled loading.

Fig. 8. Schema: ‘‘wrapping of fiber bundles’’: load is shared only inside clusters, not
between fibers in different clusters.

Fig. 9. Comparison of ‘‘wrapped’’ and ‘‘non-wrapped’’ bundles of fibers: Compres-
sive damage versus applied stress curves.
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cause the clustering itself represents a kind of localizing the load
redistribution. The ‘‘wrapping’’, load localization in composites, al-
lows increasing the composite strength.
3.4. Matrix stiffness and nanoreinforcement effects

As demonstrated in [19, see also 24], the additions of even small
amount of nanoparticles in the polymer (epoxy) matrix can ensure
sufficient increase in the stiffness and elastic parameters of the
composite: up to 1.7 times at 0.04 wt% of nanoclay.

So, the question arises on whether this effect can be used to
influence the damage resistance of hybrid composites.

First, let us estimate the effect of stiffened versus damaged
(weakened) matrix on the fiber failure in composite. We varied
the Young modulus of matrix from 0.25 of the standard epoxy va-
lue (as given in Section 2) to the 2.5 of that, and simulated the
damage growth in the unit cells.

Fig. 10 shows the relative strength of the composite plotted ver-
sus the ratio of the Young modulus of the matrix to that of intact
epoxy (i.e., from 0.25 to 2.5) (for random fiber arrangement, and
uniform displacement tensile loading).



Fig. 10. Matrix effect: Stress of D = 50% (normalized value) versus Young modulus
of the matrix divided by that of standard epoxy, for tension (a) and compression (b)
under strain controlled loading.

Fig. 11. Effect of nanoreinforcement of the strength of composites.
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The strength was calculated as stress at which the stiffness is
reduced by 50%, and was normalized over the lowest values (cor-
responding to the matrix stiffness 0.25 of epoxy), to make the ten-
dencies comparable.

It is of interest that the composites subject to the uniform force
loading show very weak dependency of the strength on matrix
properties: the difference of strengths of composites with dam-
aged, usual and strengthened matrices (Young modulus 0.25, 1.
and 2.5 of that of epoxy) are of the order of 3. . .4% both for carbon,
glass and hybrid reinforced composites.

One can see that the pure glass reinforced and hybrid compos-
ites are much more sensitive to the stiffness and damage of matrix
than the strong carbon fibers, both for tension and for compres-
sion. The apparent conclusion is that the glass reinforced and hy-
brid composites require much more stiff and damage resistant
matrices that the carbon fiber reinforced composites.

The curves for clustered fiber arrangement look very similar to
these on Fig. 10, and most parameters are of the same order.

Let us investigate the effect of the nanoclay content of the dam-
age in the composites. Assuming that the nanoclay platelets with
aspect ratio 100 and the linear size 100 nm are arranged in clus-
ters, 5 platelets each, the ratio of the Young modulus increase as
a function of nanoclay weight content can be approximated by
the following equation:

E=Em ¼ 379:97vc2
n þ 0:8899vcn þ 1:0279 ð10Þ
where vcn – weight content of nanoclay, Em – Young modulus of
pure epoxy (see Fig. 8 from [19], the curve for m = 5 and z = 0).

Introducing this relationship into the code ‘‘HybridFib’’, we can
analyze the effect of the nanoreinforcement on the damage of com-
posites. From the simulations (see the curves for tension in Fig. 11),
one could see that adding 3.5 wt% of nanoclay particles
(100 � 1 nm) leads to the 7. . .8% increase in the strength of the
composite for mixed and pure glass composite, and small
(2. . .3%) increase in the strength of pure carbon composite. Adding
9 wt% nanoclay leads to the 31. . .35% strength increase in hybrid
and glass composites, and 8% increase in carbon composite (see
Fig. 11).

Summarizing the results of this section, we can state the hybrid
and glass fiber composites are rather sensitive to the matrix stiff-
ness and damageability. The least sensitive are the pure carbon fi-
ber reinforced composites. Thus, the special attention should be
paid to ensure that the matrix for glass reinforced or hybrid com-
posites should be stiff and damage resistant, what can be achieved
with the use of the nanoreinforcement.

4. Comparison with 3D finite element computational model and
literature data

In Section 3, it was demonstrated that while the replacement of
glass fibers by carbon fibers leads to the proportional increase in
the stiffness of the composites, it does not necessarily lead to the
increase of strength. In fact, the effect of fiber mixing might be dif-
ferent: under uniform displacement tensile loading, the hybrid
composites show lower critical stress than the pure carbon or even
pure glass composites.

In this section, we seek to verify the results obtained from the
developed fiber bundle model by a more exact continuum mechan-
ics model solved by 3D finite element method.

4.1. Generation of multifiber unit cell finite element models for hybrid
composites

For the numerical testing of a number of microstructures with
varied content of carbon and automatic generation of 3D models
of hybrid fiber-reinforced composites, a Python based software
code has been developed [29,30]. This program allows also to vary
the fiber distribution, e.g. as clustering of fibers and orientation
(aligned or unaligned) before generating the fiber-reinforced com-
posites models. The program is described in more details else-
where [29,30]. The parameters of composites and properties of
phases was the same as in Section 2.

The volume content of fibers was taken 45%. The model con-
tains 16 carbon fibers for a pure carbon fiber reinforced composite,



Fig. 12. 3D unit cell models of fiber reinforced composites. (a) Unidirectional. (b) Randomly misaligned. (c) Pure carbon.

Fig. 13. Crack evolution in glass fibers.
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and only 4 fibers when the model was developed for pure glass fi-
ber case. (In other words, volume of one glass fiber equals 4 carbon
fibers.)

The 3D hybrid models were subjected to uniaxial displacement
loading along the vertical direction.

The crack initiation criterion used in this paper is the maximum
principal stress criterion while the criterion for crack propagation
analysis is the 3D power law, detailed descriptions of these criteria
can be found in authors’ previous work [29].

Fig. 12 shows examples of several unit cells. The simulations
were carried out using the commercial FE code ABAQUS/STAN-
DARD (version 6.11). 3D finite element 8-node linear brick,
reduced integration element C3D8R and three-dimensional
4-node linear tetrahedron element C3D4 were used in the FE
analysis.

In order to simulate the crack evolution in hybrid fiber rein-
forced composites, the linear elastic fracture mechanics (LEFM) ap-
proach in conjunction with the framework of the extended-FEM
method [31–33] were employed during the damage analysis. The
virtual crack closure technique (VCCT) [34,35] is used here to cal-
culate the strain energy release rates.

The material properties are: matrix: E = 1.9 GPa, m = 0.37, tensile
strength of 88 MPa, GI = 0.103, GII = 0.648, GIII = 0.850 kJ/m2 and
carbon fibers: E = 276 GPa, m = 0.37, tensile strength 3000 MPa,
GI = 3.169, GII = 12.183, GIII = 16.161 kJ/m2. Glass: E = 72 GPa,
m = 0.26, tensile strength 2500 MPa, GI = 0.682, GII = 2.245,
GIII = 2.923 kJ/m2.
4.2. Computational simulations

A series of simulations was carried out. Unit cells with 0%, 25%,
50%, 75% and 100% (volume fraction) of carbon fibers were gener-
ated and tested in numerical simulations (under tensile uniform
force loading). Fig. 13 shows the simulated crack evolution in glass
fibers. The stress strain curves were determined for all the unit
cells.

Fig. 14 shows the stress–strain curves for the simulated unit
cells. Fig. 15 shows the peak stress and critical material elongation
as a function of the fraction of carbon fibers in the composite.

The critical stress slightly increases with increasing the fraction
of carbon fibers: it can be observed both in the results obtained
from 3D FE model and in the fiber bundle model. As can be seen
in Fig. 2a, the critical stress increases by about 28% if all the glass
fibers are replaced by the corresponding volume of carbon fibers.
In the 3D FE model, the increase is 36%.

The critical elongation of the materials decreases with increas-
ing the fraction of carbon fibers, as can be seen both in the simple
fiber bundle and complex 3D micromechanical models are very
similar. Comparing the pure carbon and pure glass fiber compos-
ites, we can see from Fig. 3a (fiber bundle model) that the critical
elongation for pure glass is 72% higher than for pure carbon. For
the curves obtained from FE model (Fig. 15), the critical elongation
for pure glass fiber composite is 112% higher than for pure carbon.
The estimations are not the same (due to apparently different ap-
proaches, input data and assumptions), but still they show the sim-



Fig. 14. Stress–strain curves for the simulated unit cells.
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ilar qualitative trends: the strong decrease of the critical elongation
with increasing the fraction of carbon fibers.

Thus, the exact 3D finite element calculations confirm our con-
clusions obtained on the basis of the simple fiber bundle model.
4.3. Comparison with literature data

Let us compare our conclusions with some literature data. Bach
[25] observed that an increase in fatigue performance of hybrid
composites as compared with glass laminates does not fit expecta-
tions, especially for R = �1 cyclic loading.

Liaw and Delale [26] concluded that glass fiber reinforced com-
posites (in this case, S2 glass) provide the best impact resistance
when compared with various hybrid composites. Meanwhile, as
Summerscales and Short [6] and Dukes and Griffiths [27] wrote
in their paper ‘‘there is no change in the stress level at ultimate fail-
ure [of hybrid composites] relative to a glass-only composite’’ un-
der tensile loading (what corresponds to our results, see Fig. 2a).
Further, according to [6], ‘‘in tension, . . .. the elongation at first fail-
ure is found to be greater than that for the carbon fiber-only com-
posite’’ (again, as observed in our simulations, see Fig. 3a).

Manders and Bader [28] concluded that ‘‘an enhancement of the
failure strain of the carbon fiber reinforced phase is observed’’
when ‘‘carbon fiber is combined with less-stiff higher-elongation
glass fiber in a hybrid composite’’. This is also a conclusion from
Fig. 15. Normalized critical stress and critical material elongation as a function of
the fraction of carbon fibers in the composite.
our simulations (Fig. 3) where we can see that adding glass fibers
to carbon composites increases its failure strain.

Thus, the literature data confirm our main conclusion, namely,
that adding strong and expensive carbon fibers into the glass fiber
composites does not lead to the positive effects always and auto-
matically. While the stiffness and stress controlled (i.e., uniform
force) damage and fatigue behavior are enhanced by replacing
weak fibers by strong ones, the strength and failure elongation
might be even reduced.

5. Conclusions

In this paper, a fiber bundle based model of damage evolution in
hybrid carbon/glass composites has been developed. Using this
model, we demonstrated that the hybrid carbon/glass composites
(while demonstrating higher stiffness than pure glass composites),
can show lower strength and elongation to failure as compared
with usual glass fiber polymer composites. The strength (critical
stress) of hybrid composites can be lower than that for both pure
glass and pure carbon composites, especially under uniform dis-
placement loading. The critical elongation of the hybrid composites
decreases with increasing the fraction of carbon fibers in the hy-
brid. The results obtained from the simplified fiber bundle model
were validated by comparison with the 3D finite element model
simulations and with the literature data.
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