
A Primal-Dual Interior Point Method for

Large-Scale Free Material Optimization

Alemseged Gebrehiwot Weldeyesus∗ and Mathias Stolpe†

Abstract

Free Material Optimization (FMO) is a branch of structural optimiza-
tion in which the design variable is the elastic material tensor that is allowed
to vary over the design domain. The requirements are that the material
tensor is symmetric positive semidefinite with bounded trace. The result-
ing optimization problem is a nonlinear semidefinite program with many
small matrix inequalities for which a special-purpose optimization method
should be developed. The objective of this article is to propose an efficient
primal-dual interior point method for FMO that can robustly and accu-
rately solve large-scale problems. Several equivalent formulations of FMO
problems are discussed and recommendations on the best choice based on
the results from our numerical experiments are presented. Furthermore,
the choice of search direction is also investigated numerically and a recom-
mendation is given. The number of iterations the interior point method
requires is modest and increases only marginally with problem size. The
computed optimal solutions obtain a higher precision than other available
special-purpose methods for FMO. The efficiency and robustness of the
method is demonstrated by numerical experiments on a set of large-scale
FMO problems.
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1 Introduction

The fundamental concept of Free Material Optimization (FMO) was introduced
in the early 1990s in [6], [7], and [25]. Since then FMO has become one of the
growing research areas within structural optimization. In FMO the design vari-
able is the material tensor which can vary at each point of the design domain.
Certain necessary conditions on the attainability are the only imposed require-
ments on the material tensor. The material tensors in FMO are forced to be
symmetric positive semidefinite and have bounded trace. FMO thus yields opti-
mal structures by describing not only the distribution of the amount of material
but also the local material properties. Therefore, the optimal structure found
by FMO can be considered as an ultimately best structure among all possible
elastic continua [37]. However, the design is ideal as the manufacturing of struc-
tures with, generally anisotropic, material properties changing at each point of
the design domain is difficult and expensive. Nevertheless, FMO can be used
to generate benchmark solutions with which other models and methods can be
compared and to propose novel ideas for new design situations.

The first models in FMO considered finding the stiffest (minimizing static
compliance) structure by distributing limited resources of material. There has
been significant progress in extending these basic models and multidisciplinary
FMO problems have been proposed. FMO problems with constraints on local
stresses and displacements are presented and solved in [20], [19], and [15]. FMO
problems with constraints on fundamental eigenfrequencies are described and
solved in [27]. FMO models for three dimensional structures are developed and
analysed in [15] and for plates and shells in [13]. Theoretical aspects including
proofs of existence of optimal solutions of FMO problems can be found in e.g.
[34].

Due to the conditions imposed on the elasticity tensor in FMO, the resulting
optimization problem is a nonlinear semidefinite programming (SDP), a non-
standard problem with many matrix inequalities for which special optimization
methods have to be developed and implemented. Already in [25] an interior
point method was used to solve small size FMO problems. The formulations in
[25] have slightly different matrix inequalities compared to recent FMO models.
A method based on penalty/barrier multipliers called PBM is used in [37] to
solve FMO problems. A computer code PENNON which uses an augmented
Lagrangian function method is also developed to solve convex nonlinear and
semidefinte programming in [18] and is studied further in [26]. Several FMO
problems are solved with this method, for example in [19] and [20]. The focus
of today’s development of optimization methods for FMO problems is based on
first-order methods. Second-order methods are considered computationally too
expensive. The most recent methods in [29, 28] are based on a sequential convex
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programming concept in which the subproblems are convex and separable SDPs.
The approach often leads to large number of iterations but can achieve relatively
high accuracy.

The objective of this article is to propose an efficient primal-dual interior
point method for the, by now, classical FMO formulations. The method is capa-
ble of efficiently and accurately solving large-scale FMO problems. The method
and the implementation exploit the property that FMO problems have many
but small matrix inequalities. The method computes accurate optimal solution
within relatively few iterations. The numerical results indicate that the num-
ber of iterations furthermore only increases slowly, if at all, with problem size.
The method is developed by extending existing robust and efficient primal-dual
interior point method for nonlinear programming and coupling it with existing
techniques for linear SDP. The method is also inspired by the developments in
interior point methods for general nonlinear SDP problems, see e.g. [35] and
[32]. For an overview of primal-dual interior point methods for nonlinear (and
non convex) problems, see [11], [12], and [8]. Optimization methods for SDPs are
listed in [22] and the references cited therein.

We consider two basic FMO problems which are the primal minimum com-
pliance (maximum overall stiffness) problem and the primal minimum weight
problem. For these problems different equivalent linear and nonlinear primal and
dual formulations are available. Some of the important mathematical properties
of the problems are listed. The primal-dual interior point method is then used to
solve problem instances of all stated formulations. It is important that symmetry
is maintained in the linearised first-order optimality conditions of SDP problems.
There are different symmetrization schemes that are used to maintain the sym-
metry giving different search directions [30]. The most commonly used directions
are the AHO direction [2], the HRVW/KSV/M direction [16, 17, 21], and the NT
direction [23, 24]. All of these directions are implemented and a comparison of
their computational complexity and effect on numerical convergence is reported.

The outline of this article is as follows. In Section 2 various FMO problem
formulations with some of the useful mathematical properties are presented. In
Section 3 the general outline of the proposed primal-dual interior point method
is described for a generic nonlinear SDP. The algorithmic details of the method
specialized to FMO problems are described in Section 4. The implementation
of the method and the algorithmic parameters are described in Section 5. In
Section 6 the numerical experiments, results and discussion are presented. The
conclusions of this paper are given in Section 7.
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2 FMO problem formulations

We start with the discrete version of the minimum compliance (maximum stiff-
ness) and the minimum weight FMO formulations on two- or three-dimensional
design domains. The problem formulations and the finite element discretization
are exactly as proposed in published articles on FMO, see e.g. [29] and [20], with-
out any alterations. Existence of optimal solutions to the problem formulations
that we consider is shown in [15] under natural assumptions. The design domain
Ω is partitioned in to m uniform finite elements Ωi for i = 1, . . . ,m. The elas-
tic stiffness tensor E(x) is approximated by a function that is constant on each
finite element. Let the element values constitute the vectors of block matrices
E = (E1, . . . , Em)T . Given the external static nodal load vectors f` ∈ Rn for
` ∈ L = {1, . . . , nL}, where n is number of (finite element) degrees of freedom,
the displacement u` must satisfy the linear elastic equilibrium equation

A(E)u` = f`, ` ∈ L (1)

where the stiffness matrix A(E) is given by

A(E) =

m∑
i=1

Ai(E), Ai(E) =

nG∑
k=1

BTi,kEiBi,k. (2)

The (scaled) strain-displacement matrices Bi,k are appropriately constructed
from the derivative of the shape functions and nG is the number of Gaussian
integration points, see e.g. [9].

The two considered basic FMO formulations are the primal minimum com-
pliance problem

minimize
u1,...,unL∈Rn,E∈E

∑
`∈L

w`f
T
` u`

subject to A(E)u` = f`, ∀` ∈ L,
m∑
i=1

Tr(Ei) ≤ V,

(3)

and the primal minimum weight problem

minimize
u1,...,unL∈Rn,E∈E

m∑
i=1

Tr(Ei)

subject to A(E)u` = f`, ∀` ∈ L,
L∑
`=1

w`f
T
` u` ≤ γ,

(4)
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where E, denotes the set of admissible materials

E :=
{
E ∈ (SN+ )m | ρ ≤ Tr(Ei) ≤ ρ̄, i = 1, . . . ,m

}
.

Here, SN+ is the cone of positive semidefinite matrices in the space SN of symmetric
N ×N matrices. We say that Ei ∈ SN+ if and only if Ei = ETi and Ei � 0. The
given weights w` satisfy

∑
` w` = 1, and w` > 0 for each ` ∈ L. For FMO

problems on two-dimensional design domains N takes the value 3. For problems
on three dimensional design domains N = 6. The positive semidefiniteness of
E is a necessary condition on the physically attainability of the material. The
Tr(Ei) measures the stiffness of the material and is locally bounded from above
by ρ̄ to avoid locally arbitrarily stiff material. We also allow a lower trace bounds.
Note that 0 ≤ ρ < ρ̄ <∞. The constant V > 0 is an upper bound on the amount
of resource material to distribute in the structure.

Both problems (3) and (4) have linear objective function with linear matrix
inequalities and nonlinear (and nonconvex) vector constraints. Therefore, they
are classified as nonconvex SDPs.

If we additionally assume that E � 01 and that, as a consequence, the stiffness
matrix A(E) is positive definite and so non-singular we can obtain a nested
problem formulation, i.e. a formulation in the design variables E only. By solving
for the displacement u` in the equilibrium equation (1), we get the reduced nested
formulation of the minimum compliance problem (3)

minimize
E∈E

∑
`∈L

w`f
T
` A
−1(E)f`

subject to

m∑
i=1

Tr(Ei) ≤ V.
(5)

Similarly, a nested formulation of the minimum weight problem (4) is

minimize
E∈E

m∑
i=1

Tr(Ei)

subject to
∑
`∈L

w`f
T
` A
−1(E)f` ≤ γ.

(6)

In [29] it is shown that the function

c(E) = fT` A
−1(E)f`

1This assumption is standard within structural optimization. In the implementation it is
satisfied by forcing that Ei � εI for some small ε > 0.
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is convex and infinitely continuously differentiable. Therefore, both problems (5)
and (6) are convex SDPs since all other constraints are linear. Using the Schur
complement theorem it can also be shown that problem (3) is equivalent to

minimize
E∈E,%`≥0

∑
`∈L

w`%`

subject to

m∑
i=1

Tr(Ei) ≤ V,(
%` fT`
f` A(E)

)
� 0, ∀` ∈ L.

(7)

Problem formulations similar to (7) have also been proposed for truss topology
optimization in a number of articles, see e.g. [4, 5]. Problem (7) has a linear
objective function, and linear vector and matrix inequalities. Hence, it is a linear
SDP. For its linearity this formulation leads to a nice mathematical structure but
with additionally very large-scale matrix inequalities which are difficult to deal
with in computations, see e.g. [20]. For this reason problem (7) is excluded from
our numerical experiment.

The minimum compliance problem (3) has the following dual formulation.
For the derivation, please see the Appendix A.

maximize
u1,...,unL∈Rn
α∈R,β̄∈Rm,β∈Rm

− αV̄ + 2
∑
`∈L

w`f
T
` u` + ρ

m∑
i=1

β
i
− ρ̄

m∑
i=1

β̄i

subject to
∑
`∈L

nG∑
k=1

w`B
T
i,ku`u

T
` Bi,k − (α− β

i
+ β̄i)I � 0 , i = 1, . . . ,m

α ≥ 0, β̄ ≥ 0, β ≥ 0.

(8)

This is a problem with linear objective and convex quadratic constraints. There-
fore, it is a convex problem. For this problem it can be verified that the Slater
condition holds by choosing arbitrary u` ∈ Rn, β > 0, β̄ > 0, and sufficiently
large positive α. Since problem (3) can also be equivalently written as convex
problems, for example problem (5), the duality gap is zero. Similar results for
min-max problems can also be found in [27] and [3]. A solution to the primal
problem (3) can be obtained by solving the dual problem (8). The primal vari-
able E appears in the primal-dual system of (8) as a Lagrangian multiplier to
the matrix inequality constraints. It is thus important that the dual problem is
solved up to optimality to get a structure supporting the external loads.

Throughout this article we use the following assumptions on the problem data
in the FMO problems. Similar assumptions are stated, implicitly or explicitly, in
e.g. [3].
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A1 The loads are non-zero, i.e. f` 6= 0 for all ` ∈ L.

A2 The trace bounds satisfy 0 ≤ ρ < ρ < +∞ and the volume bound satisfies

m∑
i=1

ρ < V <

m∑
i=1

ρ.

A3 The stiffness matrix A(E) is positive definite for all E � 0.

A4 Given γ > 0 and weights w` > 0, ` ∈ L there exists positive definite E ∈ E
such that

∑
`∈L w`f

T
` A
−1(E)f` ≤ γ.

Assumption (A1) is to exclude trivial cases. Combining the positive definite-
ness of the stiffness matrix A(E) with assumption (A1) - (A4) imply that the
feasible sets of problems (3), (4), and their equivalent problems are non-empty.

3 The primal-dual interior point method

In this section the primal-dual interior method is described in the setting of a
general nonlinear SDP. The specializations to FMO problems are presented in
Section 4. In line with the special structure of the FMO problems and motivated
by the problem formulations in [29] we consider the nonlinear SDP

minimize
X∈S,u∈Rn

f(X,u)

subject to gj(X,u) ≤ 0, j = 1, . . . , k,

Xi � 0, i = 1, . . .m,

(9)

with
S = Sd1 × Sd2 × · · · × Sdm and (d1, d2, . . . , dm) ∈ Nm.

The functions f, gj : S× Rn → R, for j = 1, . . . , k are assumed to be sufficiently
smooth. After introducing slack variables s ∈ Rk to problem (9) the associated
barrier problem with barrier parameter µ > 0 is

minimize
X∈S+,u∈Rn,s∈Rk+

f(X,u)− µ
m∑
i=1

ln(det(Xi))− µ
k∑
j=1

ln(sj)

subject to gj(X,u) + sj = 0, j = 1, . . . , k.

(10)

The central idea in interior point methods is that problem (10) is solved for
a sequence of barrier parameter µk approaching zero and the barrier problem
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approaches the original problem (9). With Lagrangian multiplier λ ∈ Rk+, the
Lagrangian to problem (10) is

Lµ(X,u, s, λ) = f(X,u)− µ
m∑
i=1

ln(det(Xi))− µ
k∑
j=1

ln(sj) + λT (g(X,u) + s).

The first-order optimality conditions of the barrier problem (10) are

∇XLµ(X,u, s, λ) = ∇Xf(X,u)− µX−1 +∇X(g(X,u)Tλ) = 0 (11a)

∇uLµ(X,u, s, λ) = ∇uf(X,u) +∇ug(X,u)Tλ = 0 (11b)

∇sLµ(X,u, s, λ) = −µS−1e+ λ = 0 (11c)

together with the feasibility condition

g(X,u) + s = 0 (12)

and positive definiteness of X, positivity of the slack variables s and the dual
variables λ. Following standard techniques for interior point methods for linear
SDP, see for example [22], we introduce the additional matrix variable Z satisfying

Z := µX−1 (13)

in (11a) so that XZ−µI = 0. The optimality conditions in (11) are rewritten as
∇Xf(X,u)− Z +∇X(g(X,u)Tλ)
∇uf(X,u) +∇ug(X,u)Tλ

SΛe− µe
g(X,u) + s
XZ − µI

 =


0
0
0
0
0

 (14)

where S = diag(s), Λ = diag(λ), and e = (1, 1, . . . , 1)T is a vector of all ones of
appropriate size.

It is important that symmetry is maintained during the linearization of the
complementarity equation XZ−µI = 0 in order to apply Newton’s method to the
system in (14). This can be achieved by using the linear operator HP : Rn×n →
Sn, introduced in [36], and defined by

HP (Q) :=
1

2

(
PQP−1 + (PQP−1)T

)
where P ∈ Rn×n is some non-singular matrix. In [36], it is shown that

HP (Q) = µI ⇔ Q = µI.
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Therefore, the optimality conditions for (10) will be (14) with XZ = µI replaced
by

HP (XZ) = HP (µI) = µI. (15)

Applying Newton’s method to the system in (14) gives the search direction

(∆X,∆u,∆s,∆λ,∆Z) ∈ S× Rn × Rk × Rk × S

as the solution of the system
∇2
XXLµ(X,u, s, λ) ∇2

XuLµ(X,u, s, λ)T 0 ∇Xg(X,u)T −I
∇2
XuLµ(X,u, s, λ) ∇2

uuLµ(X,u, s, λ) 0 ∇ug(X,u)T 0
0 0 Λ S 0

∇Xg(X,u) ∇ug(X,u) I 0 0
E 0 0 0 F




∆X
∆u
∆s
∆λ
∆Z

 =

−


∇Xf(X,u)− Z +∇X(g(X,u)Tλ)
∇uf(X,u) +∇ug(X,u)Tλ

SΛe− µe
g(X,u) + s

HP (XZ)− µI

 .

(16)

Remark 3.1. Some of the blocks in the coefficient matrix of the Newton’s system
(16) are tensors of order higher than two and the blocks in the right hand side
and the search direction are combination of matrices and vectors. The violation
of standard notation is intended to simplify the presentation. For the detailed
meaning of the transposes and products, see Appendix B.

The block diagonal matrices E = E(X,Z) and F = F(X,Z) in (16) are the
derivatives of HP (XZ) with respect to X and Z respectively and are given by

E = P � P−TZ and F = PX � P−1 (17)

where the operator P �Q : Sn → Sn is defined by

(P �Q)K :=
1

2
(PKQT +QKPT ).

By choosing among different matrices P in (17) we get different search directions.
Directions obtained in this manner are called members of the Monteiro-Zhang
(MZ) family [36]. In practice, the most used search directions are the AHO di-
rection [2] obtained when P = I, the HRVW/KSH/M direction [16, 17, 21] when
P = Z1/2, the dual HRVW/KSH/M direction [17, 21] when P = X−1/2, and the
NT direction [23, 24] when P = W−1/2 with W = X1/2(X1/2ZX1/2)−1/2X1/2.
For the case of FMO problems such as (3) and (8), the matrices∇2

XXLµ(X,u, s, λ),
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E and F are block diagonal matrices where each block is small and relatively cheap
to invert. Therefore, following the tradition in interior point methods for SDP,
one can solve the reduced symmetric system(

G A
AT B

)(
∆u
∆λ

)
=

(
r̃d
r̃p

)
(18)

where

G =∇2
uuLµ(X,u, s, λ)−∇2

XuLµ(X,u, s, λ)H̃−1∇2
XuLµ(X,u, s, λ)T

A =∇ug(X,u)T −∇2
XuLµ(X,u, s, λ)H̃−1∇Xg(X,u)T

B =− Λ−1S −∇Xg(X,u)H̃−1∇Xg(X,u)T ,

and letting (Rd, rd, rc, rp, RC)T denote the right hand side of the system (16)

r̃d =rd −∇2
XuLµ(X,u, s, λ)H̃−1(Rd + F−1RC)

r̃p =rp − Λ−1rc −∇Xg(X,u)H̃−1(Rd + F−1RC)

with
H̃ = ∇2

XXLµ(X,u, s, λ) + F−1E .
The other search directions (∆X,∆s,∆Z) are then obtained from

∆X =H̃−1(Rd + F−1RC −∇2
XuLµ(X,u, s, λ)T∆u−∇Xg(X,u)T∆λ) (19a)

∆Z =F−1(RC − E∆X) (19b)

∆s =Λ−1(rc − S∆λ). (19c)

Given a current iterate (X,u, s, λ, Z) and a search direction (∆X,∆u,∆s,∆λ,∆Z)
the primal step length αp and dual step length αd are computed in two steps.
First we compute the maximum possible step to the boundary of the feasible
region by

ᾱp = max{α ∈ (0, 1] : X + α∆X � (1− τ)X, s+ α∆s ≥ (1− τ)s} (20a)

ᾱd = max{α ∈ (0, 1] : Z + α∆Z � (1− τ)Z, λ+ α∆λ ≥ (1− τ)λ} (20b)

where τ ∈ (0, 1) is the fraction to the boundary parameter. Next, a backtracking
line search can be performed to compute the final step lengths

αp ∈ (0, ᾱp], and αd ∈ (0, ᾱd]

to get sufficient decrease in a merit function φ. We use the norm of the optimality
error given by

φµ(X,u, s, λ, Z) :=‖∇Xf(X,u)− Z +∇X(g(X,u)Tλ)‖2F + ‖(SΛ− µI)e‖22
+ ‖g(X,u) + s‖22 + ‖∇uf(X,u) +∇ug(X,u)Tλ‖22
+ ‖HP (XZ)− µI‖2F (21)
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as merit function. A search direction is said to sufficiently decrease the merit
function if

φµ(X + αp∆X,u+ αp∆u, s+ αp∆ds, λ+ αd∆λ, Z + αd∆Z)

≤ (1− τ0η)φµ(X,u, s, λ, Z) (22)

for a parameter η ∈ (0, 1) and for a constant τ0 ∈ (0, 1). The new iterate
(X+, u+, s+, λ+, Z+) is then given by

(X+, u+, s+) = (X,u, s) + αp(∆X,∆u,∆s) (23a)

(λ+, Z+) = (λ, Z) + αd(∆λ,∆Z). (23b)

The stopping criteria for the algorithm and the determination of the toler-
ances for the barrier problem (10) from the tolerances for the original problem
(9) are motivated by [33]. Given that the optimality tolerance εo > 0 and the fea-
sibility tolerance εf > 0 for the original problem (9) the interior point algorithm
terminates when

max
{

max
i
‖∇Xif(X,u)− Zi +∇Xi(g(X,u)Tλ)‖F ,

‖∇uf(X,u) +∇ug(X,u)Tλ‖∞
}
≤ εo

max{max
i
‖HP (XiZi)‖F , ‖SΛe‖∞} ≤ εo

‖g(X,u)+‖∞ ≤ εf (24)

where gj(X,u)+ = max{0, gj(X,u)}. For the barrier problem (10) the tolerances
are µ dependent since barrier problems with large barrier parameter are not
solved to optimality. The inner iteration of the interior point method stops when

max
{

max
i
‖∇Xif(X,u)− Zi +∇Xi(g(X,u)Tλ)‖F ,

‖∇uf(X,u) +∇ug(X,u)Tλ‖∞} ≤ εoµ
max{max

i
‖HP (XiZi)− µI‖F , ‖SΛe− µe‖∞

}
≤ εoµ

‖g(X,u) + S‖∞ ≤ εfµ. (25)

In our numerical experiments we use

εoµ = max{10µ, εo − µ} and εfµ = max{10µ, εf}. (26)

It can be verified that determining the tolerances for the barrier problem as in
(26) ensures that a point satisfying the inner stopping criteria for a small µ value
also satisfies the stopping criteria for the outer iteration.
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We use two strategies to update the barrier parameter µ. In the first strategy
we estimate the µ value from a given (not necessarily feasible) point (X,u, s, λ, Z).
By coupling results known from nonlinear programming and linear SDP, Tr(XTZ)+
sTλ measures the gap between the objective functions of primal and dual prob-
lems. Therefore we estimate the current µ value by

µ = σ(
∑
i

Tr(XT
i Zi)/di + sTλ)/(m+ k) (27)

where σ < 1 is a prescribed centring parameter. In our numerical experiment
it is observed that this update strategy gives a monotone decrease in µ for the
problems we solve. The second strategy is a simple one. We initialize µ value
and update it as

µ+ = ε0µ, for ε0 < 1. (28)

The over all description of the interior point method is given in Algorithm 1.

Remark 3.2. Our primary focus is to develop efficient methods for FMO prob-
lems. Since the FMO formulations in Section 2 such as (3) and (8) are all well-
posed we do not include any techniques to detect infeasibility or unboundedness
in the description of the primal-dual interior point method in Algorithm 1.

4 Algorithmic details for FMO problems

In this section we discuss the optimality conditions and the primal-dual systems
for the interior point method specialized to the different FMO problem formula-
tions in Section 2. The discussion in the rest of this section is for a single load case
problem to simplify notations. The subscript ` in u` and f` is also dropped. Fur-
thermore, we introduce the operators T1 : S → Rm defined by (T1E)i = Tr(Ei)
and T2 : S → R defined by T2E =

∑
i Tr(Ei) for every E = (E1, . . . , Em)T ∈ S.

The adjoints of these operators are T ∗1 : Rm → S defined by (T ∗1 y)i = yiI for
every y ∈ Rm and T ∗2 : R→ S defined by (T ∗2 α)i = αI for every α ∈ R where the
identity matrix I in both cases has the same size as Ei.

Introducing the slack variables (r̄, r, s) ∈ Rm+ × Rm+ × R+ to the minimum
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Algorithm 1 A primal-dual interior point algorithm for nonlinear SDP problems.

Choose w0
p = (X0, u0, s0), w0

d = (λ, Z), and (µ0 or use (27)).
Set the outer iteration counter k ← 0.
while stopping criteria (24) for problem (9) is not satisfied and k < kmax do

Set the inner iteration counter i← 0
while stopping criteria (25) for problem (10) is not satisfied and i < imax
do

Compute the search direction ∆wk,ip and ∆wk,id by solving system (18) and
(19).
Compute ᾱp and ᾱd as in (20).
Set the line search iteration counter l← 0.
Set LineSearch ← False

while LineSearch = False and l < lmax do
αp ← ηlᾱp and αd ← ηlᾱd
if φµ(wk,ip + αp∆w

k,i
d , wk,id + αd∆w

k,i
d ) ≤ (1− τ0ηl)φµ(wk,ip , wk,id ) then

Set the new iterate (wk,i+1
p , wk,i+1

d ) as in (23).
LineSearch ← True

else
l← l + 1.

end if
end while
i← i+ 1.

end while
Update µk+1 as in (27) or (28).
k ← k + 1.

end while

compliance problem (3), the associated barrier problem is given by

minimize
u∈Rn,E∈E,r̄,r,s

fTu− µ
m∑
i=1

ln(det(Ei))− µ
m∑
i=1

ln(r̄i)− µ
m∑
i=1

ln(ri)− µ ln(s)

subject to A(E)u− f = 0,

T1E + r̄ − ρ̄e = 0,

ρe− T1E + r = 0,

T2E + s− V = 0,
(29)

where µ > 0 is barrier parameter. The slack variables are implicitly kept strictly
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positive. Then problem (29) has the following Lagrange function

L(x) =fTu− µ
m∑
i=1

ln(det(Ei))− µ
m∑
i=1

ln(r̄i)− µ
m∑
i=1

ln(ri)− µ ln(s)

+ λT (A(E)u− f) + β̄T (T1E + r̄ − ρ̄e)

+ βT (ρe− T1E + r) + α(T2E + s− V ),

(30)

where x = (E, u, r̄, r, s, λ, β̄, β, α) with (λ, β̄, β, α) ∈ Rn×Rm+×Rm+×R+ Lagrange
multipliers. With the technique in (13) the optimality conditions to problem (29)
are

λTF (u)− Z + T ∗1 β̄ − T ∗1 β + T ∗2 α = 0 (31a)

A(E)λ+ f = 0 (31b)

A(E)u− f = 0 (31c)

T1E + r̄ − ρ̄e = 0 (31d)

ρe− T1E + r = 0 (31e)

T2E + s− V = 0 (31f)

R̄B̄ − µe = 0 (31g)

R B − µe = 0 (31h)

sα− µ = 0 (31i)

HP (E,Z)− µI = 0 (31j)

where
B̄ = diag(β̄), B = diag(β), R̄ = diag(r̄), R = diag(r),

and F (u) = (A1(E)j,ku, . . . , Am(E)j,ku) with Ai(E)j,k = ∂Ai(E)
∂(Ei)j,k

and the multi-

plication λTF (u) defined such that (λTF (u))i = λTAi(E)j,ku for each j and k
in the set of indices of Ei. Under the assumption Ei � 0 for all i, the matrix
A(E) is positive definite. Therefore, the equation A(E)λ + f = 0 uniquely de-
termines the Lagrange multiplier λ. By setting λ = −u we get a reduced set of
optimality conditions consisting of the primal residuals (31c)-(31f), the perturbed
complementary conditions (31g)-(31j) and

−uTF (u)− Z + T ∗1 β̄ − T ∗1 β + T ∗2 α = 0. (32)

We denote by Rd the negative of the left hand sides of (32), by (rp1
, . . . , rp4

)
the negative of the primal residuals and by (rc1 , . . . , rc3 , Rc4) the negative of
perturbed complementary residuals. Applying Newton’s method to the reduced
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system and eliminating the search directions ∆β̄, ∆β, ∆r̄, ∆r, and ∆s as in (36)
results in the saddle point system− 1

2A(E) F (u) 0
F (u)T D T ∗2

0 T2 −s/α

∆ũ
∆E
∆α

 =

f −A(E)u
R1

r1

 (33)

where the block diagonal matrix D is given by

D = F−1E + T ∗1 (R̄−1B̄ +R−1B)T1.

Note that F (u)∆E =
∑
i

∑
j,k(Ai(E)j,ku)(∆Ei)j,k with j and k in the set of

indices of Ei.
The residuals R1 and r1 are given by

R1 = Rd + F−1Rc4 − T ∗1 R̄−1(rc1 − B̄rp2
) + T ∗1 R

−1(rc2 −Brp3
) (34)

r1 = rp4 −
1

α
rc3 . (35)

The other search directions are then computed as

∆u = −∆ũ (36a)

∆Z = F−1(Rc4 −∆E) (36b)

∆r̄ = rp2
− T1∆E (36c)

∆r = rp3
+ T1∆E (36d)

∆β̄ = R̄−1(rc1 + B̄(−rp2
+ T1∆E)) (36e)

∆β = R−1(rc2 +B(−rp3
− T1∆E)) (36f)

∆s =
1

α
(rc3 − s∆α). (36g)

The change of variables in (36a) is introduced to make the coefficient matrix
in the saddle point system (33) symmetric. Next we present the saddle point
system to the nested minimum compliance problem (5). The compliance c(E) =
fTA−1(E)f has the completely dense Hessian

∇2c(E) = 2F (u(E))TA−1(E)F (u(E)), where u(E) = A−1(E)f (37)

see e.g. [29]. Following a similar procedure as above, problem (5) results in the
saddle point system(

2F (u(E))TA−1(E)F (u(E)) +D T ∗2
T2 −s/α

)(
∆E
∆α

)
=

(
R1

r1

)
. (38)
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We can formulate an equivalent but sparse system to (38). We introduce a dummy
variable ∆ũ such that

2A−1(E)F (u(E))∆E = ∆ũ

and get a larger but sparse system − 1
2A(E) F (u(E)) 0

F (u(E))T D T ∗2
0 T2 −s/α

∆ũ
∆E
∆α

 =

 0
R1

r1

 . (39)

In FMO problems the systems (38) and (33) are large-scale due to the large size
of the design variable E and the number of degrees of freedom. Since each block
matrices in the block diagonal matrix D is also relatively small and cheap to
invert we further eliminate ∆E from the systems and solve a smaller system with
coefficient matrix(

− 1
2A(E)− F (u)D−1F (u)T −F (u)D−1T ∗2
−T2D

−1F (u)T −s/α− T2D
−1T ∗2

)
(40)

in the variables (∆ũ,∆α) and with updated right hand side. Our numerical
experiments show that for larger problems it is even more efficient to eliminate
again ∆α from (40) and solve the system with coefficient matrix

− 1

2
A(E)− F (u)D−1F (u)T − F (u)D−1T ∗2 (−s/α− T2D

−1T ∗2 )−1(T2D
−1F (u)T )

(41)
in ∆ũ and then use the Sherman-Morrison formula [14] in which we only factorize
the sparse matrix

− 1

2
A(E)− F (u)D−1F (u)T . (42)

Remark 4.1. The reduction of the system by setting λ to some scalar multiple
of u is limited to the classical FMO problems considered in this article. This
reduction may not be possible if other problem formulations are considered, for
example, problems that include local stress constraints, see [19].

Remark 4.2. The difference in sparsity pattern of the matricesA(E) and F (u)D−1F (u)T

is more visible for multiple load problems with the second matrix being much
more dense than the first matrix.

Remark 4.3. For problems (4), (6), and (8) similar saddle point systems to
either (33) or (39) in size and structure can be formulated.

Remark 4.4. For the minimum weight problem in the simultaneous analysis and
design approach (4) we set λ = −αu, where λ and α are Lagrange multipliers, to
the elastic equilibrium equation A(E)u−f = 0 and to fTu+s−γ = 0 respectively
to get reduced optimality conditions.
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Remark 4.5. Since the matrix variables (E,Z) and hence the search directions
(∆E,∆Z) are symmetric, the computations are performed with the entries only
in the lower triangular parts of these matrices.

5 Implementation, algorithmic parameters, and
problem data

The interior point method and the finite element routines are implemented en-
tirely in MATLAB Version 7.7 (R2008b). All numerical experiments are run on
Intel Xeon X5650 six-core CPUs running at 2.66 GHz with 4GB of memory per
core (only a single core is used per problem). The finite elements used are stan-
dard four node bilinear elements obtained by full Gaussian integration, see e.g.
[9].

The saddle point systems (40) and (42) and the elastic equilibrium equation
in the case of the nested problem formulations (5) and (6) are solved using the
LU factorization routines which are built into MATLAB. As described in Section
3 different choices of the matrix P in (17) result in different search directions.
Table 1 shows how the block diagonal matrices E , F , and the right hand side Rc4
of the linearised equation of the complementarity equation (31j) for the AHO,
the HRVW/KSV/M and the NT directions are computed. Computation of the
NT direction follows from [31]. The matrix G in Table 1 is determined by first
performing a Cholesky factorization on E and Z, namely,

E = LLT and Z = RRT

and then singular value decomposition on RTL, say UDV T = RTL. Then we
have

G = LV D−1/2.

Table 1: Computation of E , F and the right hand side Rc4 .

AHO (P = I)
HRVW/KSV/M (P = Z1/2)

NT (P = W−1/2and pre- and post-

multiplying by Z−1/2 = G−1)

E I � Z I � I G−1 �GTZ
F E � I E � Z−1 G−1E �GT

Rc4 σµI − 1
2
(EZ + ZE) σµZ−1 − E σµ−D2

The optimality tolerance is set to εo = 10−7 while the feasibility tolerance
is εf = 10−8 for all problems. The optimality and feasibility tolerances for the
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barrier problems are computed as in (26). We say that the current iterate is a
solution if it satisfies the stopping criteria for the inner and outer iterations as
outlined in (25) and (24). The minimum barrier parameter value µmin is set to
10−9. The boundary to the fraction parameter τ is set to 0.9. The parameters
used in the backtracking line search are set as η = 0.5 and τ0 = 10−5, respectively.
For all problems we observe that the algorithm converges without performing
any line search. This could be because the treated problems are either convex
or can be equivalently written as a convex problem. For this reason the line
search part of the algorithm was not activated in the numerical experiments.
Both barrier update strategies given in (27) and (28) are implemented. In the
numerical experiments we use (27) with σ = 0.4 since the µ values in this case
are proportional to the duality gap.

The primal design variables are initially set to Ei = 0.1ρ̄I for all i, while the
primal displacement variables are set to zero, i.e. u` = 0 for all `. All slack vari-
ables are all set to ones and that Lagrange multipliers for equality constraints are
set to zero. Lagrange multipliers for scalar (or matrix) inequalities are otherwise
set to ones (or identity matrices). When solving minimum compliance problems
the total weight fraction is set to 33.3% of the maximum weight, i.e. V = (m/3)ρ̄.
When solving the minimum weight problems the bound on the compliance is set
to 25% of the compliance evaluated at the initial point. The local bounds on the
Tr(Ei) are scaled in such away that ρ̄/ρ = 104.

6 Numerical experiments

The numerical experiments have three objectives. The first goal is to compare
the performance of the interior point method when applied to the different FMO
formulations presented in Section 2 and determine the best choice of formula-
tion. The second goal is to investigate the numerical behaviour of the AHO,
the HRVW/KSV/M, and the NT search directions and give recommendations.
We use performance profiles as introduced in [10] to evaluate the numerical per-
formances. The number of iterations and CPU time of the method required to
obtain a solution are used as measures of the performances. The third goal is to
show the efficiency of the method. This is achieved first by reporting solutions
to a set of large-scale FMO problems. Second, by solving benchmark problems
and making comparison to the recent numerical results presented in [29]. The
results in [29] are obtained using a state-of-the-art special purpose method for
FMO problems.

Throughout the article we use the colour bar in Figure 1 to show the optimal
density distribution, that is, the trace of the stiffness tensor of the optimal designs.
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Figure 1: Colour bar for the optimal density distribution.

6.1 Performance

We consider a set of FMO problem instances over 2D design domains to compare
the performance of the formulations and search directions. Four two-dimensional
benchmark problems from [37], [7], and [19] are considered. The design domains,
boundary conditions, and loads for these problems are shown in Figure 2. The
first one is a single load Cantilever beam problem with design domain dimensions
2 × 1. The second problem is a single load Michell beam problem with design
domain dimensions 2 × 1. In the third problem we consider an L-shaped design
domain with dimension 1 × 1 with a quarter square removed from one corner.
The last benchmark is a two load problem with a rectangular design domain of
dimension 2× 1. In all cases we apply a load over a segment of length 0.04. For
each design domain there are four level of finite element discretizations with the
finer mesh obtained from the coarser by refining each element into four elements.
Details of the problem instances are given in Table 2.

6.1.1 Performance of the formulations

Considering the minimum compliance problem we solve the three formulations,
namely, the simultaneous analysis and design approach (3), the dual formula-
tion (8), and the nested approach (5) for all problem instances in Table 2. It
is shown in Figure 5 that the performance profiles are similar. The identical
profiles of the dual and SAND formulations in Figure 5a is the result of the sim-
ilarity (up to a scaling) of the optimality conditions (once λ is eliminated from
the optimality condition of the SAND formulation to get (32)). While solving
the nested formulation the additional computational effort of solving the elastic
equilibrium equations as in the second part of (37) at each interior point iteration
is almost not visible in the performance profiles. It is slightly more noticeable for
the multiple load case problems. For example, for solving the minimum weight
problem on the ”Two Loads Case IV” in Table 2, the average CPU time spent
on one interior point iteration was 453 seconds for solving the problem of SAND
formulation and 465 seconds for the problem of nest formulation. We expect
higher computational efforts if we solve much larger problems or problems over
3D design domains. For the minimum weight problem we solve the simultaneous
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(a) (b)

(c) (d)

Figure 2: Design domains, boundary conditions, and external loads for the Can-
tilever benchmark problem (a), the Michell beam problem (b), the L-shape prob-
lem (c), and the two load case problem (d).
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(a) (b)

(c) (d)

Figure 3: Optimal density distribution obtained by solving the minimum com-
pliance problem (3) for the Cantilever IV benchmark problem (a), the Michell
IV beam problem (b), the L-shape IV problem (c), and the two load case IV
problem (d).

(a) (b)

Figure 4: Principal material directions for the optimal designs for the Michell
beam problem (a), and the two load case problem (b).

21



Table 2: Problem instances.

Problems
No. of finite No. of design No. of non-fixed

elements variables state variables

Cantilever I 7500 45000 15300
Cantilever II 30000 180000 60600
Cantilever III 120000 720000 241200
Cantilever IV 480000 2880000 962400
Michell I 5000 30000 10200
Michell II 20000 120000 40400
Michell III 80000 480000 160800
Michell IV 320000 1920000 641600
L-shape I 1875 11250 3900
L-shape II 7500 45000 15300
L-shape III 30000 180000 60600
L-shape IV 120000 720000 241200
Two Loads case I 5000 30000 10098
Two Loads case II 20000 120000 40198
Two Loads case III 80000 480000 160398
Two Loads case IV 320000 1920000 640798

analysis and design problem (4) and the nested formulation (6) for all problem
instances in Table 2. Figure 6 suggests similar results as to the minimum weight
problems.

6.1.2 Performance of the search directions

We compare the numerical performance of the AHO, the HRVW/KSV/M, and
the NT search directions. We solve the problem formulation in (3) for all problem
instances in Table 2 using all search directions. Figure 7a shows that the number
of iterations is fewer when using the AHO and NT directions compared to the
HRVW/KSV/M direction. In our numerical experiments we generally get larger
optimality error in each first inner iteration for HRVW/KSV/M direction than
for the other two directions. As a result the method requires more inner iterations
per outer iteration when the HRVW/KSV/M direction is used. It seems that this
issue can be resolved by choosing a more aggressive barrier update strategy, for
example, as in (28) with ε0 = 0.1. However, this results in numerical instabilities
for some of the problems as the iterates are close to the optimal solution. We
also experience that the AHO direction is more sensitive than the NT direction
to changes in algorithmic parameters and barrier update strategies. The plot in
Figure 7b suggests that the CPU time for using the NT direction is in between the

22



1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

τ

F
ra
c
ti
o
n
o
f
p
ro
b
le
m
s
so
lv
e
d

 

 

NESTED
SAND
DUAL

(a)

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

τ

F
ra
c
ti
o
n
o
f
p
ro
b
le
m
s
so
lv
e
d

 

 

NESTED
SAND
DUAL

(b)

Figure 5: Performance profiles for the formulations of the minimum compliance
problem. Number of iterations as performance measure (a), CPU time as perfor-
mance measure (b).
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Figure 6: Performance profiles for the formulations of the minimum weight prob-
lem. Number of iterations as performance measure (a), CPU time as performance
measure (b).
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Figure 7: Performance profiles for the search directions. Number of iterations as
performance measure (a), CPU time as performance measure (b).

AHO and the HRVW/KSV/M directions. This is because we perform Cholesky
factorizations of each Ei and Zi for i = 1, . . . ,m and the additionally the Singular
Value Decompositions of a matrix computed from the Cholesky factorizations.

The plots for the optimal density distribution of each design domain is given
in Figure 3. The principal material directions of optimal designs for the Michell
beam and the two load case problems are shown in Figure 4. The directions are
computed based on the principal eigenvectors associated to the Voigt-stiffness
tensor. The numerical result for solving problem (3) for each problem instances
in Table 2 is given in Table 3.

6.2 Efficiency compared to alternative methods

The problems listed in Table 3 are, by far, the largest FMO problems reported
to date. The proposed primal-dual interior point method requires a modest
number of iterations. All problem instances reported in Table 3 are solved within
25-55 iterations. Table 3 illustrates that there is a mild increase in number of
iterations with increasing problem size. We also notice that when solving the
largest problems the memory requirements and the computational expense of the
method are largely dominated by the solution of the saddle point system (42)
and additionally of the elastic equilibrium equation for the nested formulations.

We also make comparisons with the FMO results presented in [29]. The prob-
lems in [29] are solved by the code PENSCP. At present the comparison is limited
only to problems considered in this article. The comparison is indeed merely in
a sense that we solve a multiple load case of problem formulation (5) while in
[29] an alternative worst-case multiple problem is solved. Moreover, the loading
and the size of fixed boundary regions could differ up to scaling. Comparison
on CPU time also have discrepancy for the fact that the programming languages
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Table 3: Numerical results for the problem instances in Table 2 and the minimum
compliance problem (3).

Problems No. of iterations CPU time (s) Compliance

Cantilever I 34 213 5.0816
Cantilever II 44 1128 5.0802
Cantilever III 40 4257 5.0826
Cantilever IV 40 17713 5.0925
Michell I 34 142 1.8331
Michell II 48 819 1.8349
Michell III 55 3809 1.8362
Michell IV 49 13787 1.8391
L-shape I 29 47 2.1780
L-shape II 35 215 2.1814
L-shape III 35 896 2.1845
L-shape IV 34 3518 2.1885
Two Loads case I 25 134 0.4220
Two Loads case II 28 622 0.4253
Two Loads case III 30 2941 0.4263
Two Loads case IV 31 14441 0.4272

and the machines used to perform numerical experiments are different. However,
the reported results are still interesting since the efficiency both in CPU time and
number of iterations required to get even a higher quality solution is significant.
The design domain, boundary conditions, and loads are depicted in Figure 8. In
Table 4 we report the numerical results for a four load case with three different
discretizations. In the first column we list the number of finite elements, in the
second column the number of iterations, in the third column the achieved op-
timality and feasibility tolerances, and in the fourth column the CPU time. In
the fifth and sixth columns we include the number of iterations and the CPU
time from [29] required by PENSCP to solve the problem. Note that the CPU
times reported include the entire computation process, i.e, starting from mesh
and finite element generations to the end of the optimization process. When we
compare the obtained results to the results in Table 7.1 in [29], we notice that
the efficiency of the proposed interior point method both in time and number of
iteration. The solutions obtained with the interior point method are also more
accurate. In [29] one of the stopping criteria used is a measure of the optimality
error that is set to lower tolerance than used in our numerical experiment. We
also solve another problem with 5000 elements for three different load cases. The
numerical result is presented in Table 5. In this table the first column contains
the load cases and the other columns are similar to those of Table 4. This table
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Figure 8: Design domain, boundary conditions, and external loads for the prob-
lem instances listed in Tables 4 and 5.

also shows the efficiency of the interior point method and accuracy of solutions
when we compare to the results in Table 7.2 in [29].

We are also able to obtain a solution for 80000 finite elements and 8 load cases
within 36 iterations and 81420 seconds. The optimal design is shown in Figure
9b.

Table 4: Numerical results for solving problem (5) with 4 load case. The two last
columns in the table are from [29].

FEs iter opt/feas CPU time
iter CPU time

(s) PENSCP (s), PENSCP

1250 26 0.0000e+00/6.7531e-08 56 622 256
5000 27 0.0000e+00/6.0402e-08 254 482 1027

20000 29 0.0000e+00/5.3046e-08 1298 522 7878

7 Conclusions

We propose an efficient primal-dual interior point method for several classical
formulations of FMO. The number of iterations the method requires is appeal-
ing and increases only slowly with increases in problem size. With the interior
point method we solve, by far, the largest FMO problem reported to date. The
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(a) (b)

Figure 9: Optimal density distribution for the multiple load problem in Figure
8. Problem with 20000 finite elements and 4 load cases as described in Tables 4
and 5 (a), problem with 80000 finite elements and 8 load cases (b).

Table 5: Numerical results for solving problem (5). The design domain is par-
titioned into 5000 finite elements. The two last columns in the table are from
[29].

Lc iter opt/feas CPU time (s)
iter CPU time (s)

PENSCP PENSCP

2 31 0.0000e+00/1.2200e-08 166 543 585
4 27 0.0000e+00/6.0402e-08 245 489 1027
8 28 0.0000e+00/2.7303e-08 738 370 1319

obtained accuracy of the computed optimal solutions is higher compared to so-
lutions obtained by other methods developed for FMO. For large-scale problems
the memory requirements and the computation time of the method are domi-
nated by the direct solution of the saddle point systems for computing the search
direction. Future research will be directed towards developments of efficient pre-
conditioner for iterative methods for the saddle-point systems with the aim to
solve very large-scale 3D problems.

The number of iterations of the method is similar when solving either of the
simultaneous analysis and design or the nested problem formulations. For solving
the nested problem formulation the additional expected computational effort of
solving the elastic equilibrium equations at each interior point iteration is almost
not visible for the problems sizes considered. However, the differences that can
be seen when solving multiple load problems could indicate higher computational
efforts if we solve much larger problems or problems over 3D design domains. The
dual formulation (8) also works well. However, there are no dual reformulations
like (8) if other constraints, such as stress constraints, are included in the problem
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formulations.
Our numerical experiments indicate that the NT and AHO directions are more

efficient than the HRVW/KSV/M direction as they require fewer inner iterations
per outer iteration. Comparing the AHO and NT directions we experience that
the NT directions are less sensitive to changes in algorithmic parameters and
speed of updating the barrier parameter. Therefore, the NT direction is our
preferred choice.

The results in this article are exclusively supported by numerical experiments.
Theoretical treatment of convergence theory of the interior point method must be
further analysed. The applicability of relevant available theories in the literature
should be investigated and potentially applied to show global convergence.
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Appendix A

In this Appendix we derive the dual formulation (8) of the minimum weighted
compliance problem (3). Similar result for minimax problems can be found in
[3]. Analogous all-quadratic formulations of minimum compliance truss topology
optimization problems are described, for example, in [1]. The linear elasticity
static structural analysis problem can be written as

sup
u`

{
2fT` u` − uT` A(E)u`

}
which is a quadratic problem with negative definite Hessian and hence a concave
maximization problem. The optimality condition is A(E)u` = f` and the optimal
value is fT` u` if f` ∈ R(A(E)) and −∞ otherwise. Due to the stated assumptions
we replace the sup with max in the following. Therefore, the minimum compliance
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problem (3) is equivalent to

minimize
E1,...,Em�0

∑
`∈L

w`max
u`

{
2fT` u` − uT` A(E)u`

}
subject to ρ ≤ Tr(Ei) ≤ ρ̄ , i = 1, . . . ,m,

m∑
i=1

Tr(Ei) ≤ V̄ .

(43)

The Lagrangian L associated with (43) is

L(E, u`, α, β̄, β) =
∑
`∈L

w`max
u`

{
2fT` u` − uT` A(E)u`

}
+

m∑
i=1

β
i
(−Tr(Ei) + ρ)

+

m∑
i=1

β̄i(Tr(Ei)− ρ̄) + α(

m∑
i=1

Tr(Ei)− V̄ )

= max
u1,...,unL

∑
`∈L

w`(2f
T
` u` − uT` A(E)u`) +

m∑
i=1

β
i
(−Tr(Ei) + ρ)

+

m∑
i=1

β̄i(Tr(Ei)− ρ̄) + α(

m∑
i=1

Tr(Ei)− V̄ )

= max
u1,...,unL

(
∑
`∈L

w`(2f
T
` u` − uT` A(E)u`) +

m∑
i=1

β
i
(−Tr(Ei) + ρ)

+

m∑
i=1

β̄i(Tr(Ei)− ρ̄) + α(

m∑
i=1

Tr(Ei)− V̄ ))

= max
u1,...,unL

(
∑
`∈L

2w`f
T
` u` − αV̄ + ρ

m∑
i=1

β
i
− ρ̄

m∑
i=1

β̄i

+

m∑
i=1

〈
Ei, (α− βi + β̄i)I −

∑
`∈L

nG∑
k=1

w`B
T
i,ku`u

T
` Bi,k

〉
).
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The corresponding dual function is

g(u1, . . . , unL , β̄, β, α)

= minimize
E1,...,Em�0

max
u1,...,unL

(
∑
`∈L

2w`f
T
` u` − αV̄ + ρ

m∑
i=1

β
i
− ρ̄

m∑
i=1

β̄i

+

m∑
i=1

〈
Ei, (α− βi + β̄i)I −

∑
`∈L

nG∑
k=1

w`B
T
i,ku`u

T
` Bi,k

〉
)

=

{
max

u1,...,unL
(
∑
`∈L 2w`f

T
` u` − αV̄ + ρ

∑m
i=1 βi − ρ̄

∑m
i=1 β̄i) if (44) holds

−∞ otherwise.

Below is the condition that the dual function g attains its minimum value.∑
`∈L

nG∑
k=1

w`B
T
i,ku`u

T
` Bi,k � (α− β

i
+ β̄i)I, i = 1, . . . ,m. (44)

The dual formulation of the minimum compliance problem (3) becomes

sup
u1,...,unL ,α≥0,β̄≥0,β≥0

− αV̄ + 2
∑
`∈L

w`f
T
` u` + ρ

m∑
i=1

β
i
− ρ̄

m∑
i=1

β̄i

subject to
∑
`∈L

nG∑
k=1

w`B
T
i,ku`u

T
` Bi,k − (α− β

i
+ β̄i)I � 0 , i = 1, . . . ,m.

Appendix B

The following products are in tensor notation.

1. (∇2
XrXs

Lµ(X,u, s, λ)∆Xs)ij = (∇2
XrXs

Lµ(X,u, s, λ))ijpq(∆Xs)pq, for r, s =
1, ..,m, for i, j = 1, ..., dr, and for p, q = 1, ..., ds.

2. (∇2
Xru
Lµ(X,u, s, λ)∆Xr)i = (∇2

uXr
Lµ(X,u, s, λ))ipq(∆Xr)pq, for r = 1, ..,m,

for p, q = 1, ..., dr, and for i = 1, ..., n.

3. (∇2
Xru
Lµ(X,u, s, λ)T∆u)ij = (∇2

Xru
Lµ(X,u, s, λ))ijp(∆u)p, for r = 1, ..,m,

for i, j = 1, ..., dr, and for p = 1, ..., n.

4. (∇Xrg(X,u)T∆λ)ij = (∇Xr (g(X,u)T∆λ))ij , for r = 1, ..,m, and for i, j =
1, ..., dr.

5. (∇Xrg(X,u)∆Xr)i = (∇Xrgi(X,u))pq(∆Xr)pq, for r = 1, ..,m, for p, q =
1, ..., dr, and for i = 1, ..., k.
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