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Abstract Strain gauges are used together with the cor-
responding gauge factor to relate the relative electrical
resistance change of the strain gauge with the strain of the
underlying material. The gauge factor is found from a cal-
ibration on a stiff material - steel. Nevertheless, the gauge
factor depends on the stiffness of the calibration material
and ideally the calibration should be done on a similar mate-
rial as tested. In practice, the gauge factor found by the
strain gauge manufacturer is often used. The paper doc-
uments that even for moderately stiff materials such as
glass-fibre composites a significant error is found on the
strain measurements obtained by the strain gauges. This is
documented both experimentally and numerically. A stiff-
ness, also test sample and strain gauge geometry dependent
correction coefficient of the gauge factor is proposed. A cor-
rection coefficient covers material stiffnesses ranging from
1 GPa to 200 GPa.
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Notations

A parameter used for correction coefficient deter-
mination for the global reinforcement effect;

B width;
C correction coefficient;
C0 permanent correction coefficient (depends on the

strain gauge length);
E Young’s modulus;
E*sg reduced Young’s modulus of the strain gauge,

which depends on the strain gauge stiffness and
geometrical dimensions [10];

GFact actual gauge factor;
GFcal gauge factor provided by manufacturer (deter-

mined on a stiff calibration specimen);
L length;
t thickness;
tcr critical thickness showing transition from a

global to only a local reinforcement effect;
�R/R0 relative change of resistivity;
ε strain;
εave average strain experienced by specimen.

Subscripts

ext + SG values determined with clip on extensometer,
when specimen is simultaneously bonded to
strain gauge;

gauge gauge, i.e., measuring grid, properties;
loop end-loops of strain gauge (Fig. 1);
PI polyimide (carrier film) properties;
ref reference values obtained by an extensometer

for specimens with or without attached strain
gauge;
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sg used to indicate strain gauge measurements and
properties of homogenized strain gauge;

spec properties of unreinforced test specimen (also
relates to input values in simulation model).

Introduction

Strain gauges are commonly used strain measurement
devices constructed from thin metallic grid, which is
enclosed between polymer films (see Fig. 1). The work-
ing principle of the strain gauge incorporates the change
of electrical resistance in the metal part linearly with its
deformation [1]. Correlation between these two variables
is expressed as the gauge factor [2], its determination is in
more detail discussed later in subsection “Correction coef-
ficient determination”. During experimental testing the
change of electrical resistance in the strain gauge is mea-
sured and converted into the strain values using the gauge
factor.

This study is initiated by experimental observations, dur-
ing which different elastic modulus values were obtained
for identical polymer matrix based composite. The differ-
ence observed comparing the strain measurement from the
strain gauge with the clip on extensometer. Deviations sus-
pected to be caused by the stiffness mismatch between the

(a)

(b)

(c)

Fig. 1 Representation of strain gauge grid pattern (a), the 3D (b) and
the 2D (c) simulation model

strain gauge, which includes a thin metal grid, and the test
sample, which is more compliant. Therefore the strain gauge
induces strain reduction in the more compliant test sample
[3] and promote strain distortions around the edges, where
strains are transmitted from the test sample to the gauge [4,
5]. These phenomena are attributed to the effect known as
the ”reinforcement effect” [6]. As a result of the reinforce-
ment effect, strain gauges measure lower strains compared
with the strains experienced locally by the test sample in
the absence of the strain gauge. This can lead to signifi-
cant errors in determination of strain and elastic modulus.
In spite of this, the standards often recommend the use of
a strain gauge as an optional strain measurement device
during mechanical testing of polymer and polymer matrix
composite materials [7–9]. In addition to this, strain gauges
are used to a great extent as strain identification sensors in
composite structures.

One of the earliest studies regarding the strain gauge
reinforcement effect are given by Stehlin [4]. Stehlin has
modelled stress and strain distortions in the test sample,
strain gauge and adhesive. This has been further applied by
Beatty’s and Chewning’s [5] to conduct numerical analysis
of strain gauge geometrical parameters such as thickness
and length. These authors have provided an approximate
expression to predict the local reinforcement effect, when
strains are modified locally around an attached strain gauge
and are found to be independent of specimen geometry.
The expression indicates that reinforcement increases with
stiffer and thicker strain gauges, whereas it decreases with
longer strain gauges and stiffer specimens [5]. On the basis
of theses studies, a more detailed discussion regarding cor-
rection of strain gauge measurements has been presented
by Ajovalasit et al. [10–12]. First of all, the correction of
the gauge factor obtained by conventional strain gauge cali-
bration methods can be done [10] by correction coefficients
derived from mathematical expressions. For that Ajovalasit
et al. have provided improved mathematical expression
based on deductions of Beatty and Cheawning [5]. Another
approach involves strain gauge calibration on materials
more compliant than the test samples [11]. The above men-
tioned studies were focussed on the local reinforcement
effect estimation. Thus in the analytical and numerical
models the specimen has been considered as a thick and
semi-infinite plate having the same width as the strain
gauge. The two dimensional problem has been considered
for three dimensional calculations, in which the strain gauge
and specimen have been defined as linear-elastic materials.

A similar approach has been used for the global rein-
forcement effect by Swan [13] and Little et al. [14]. Now
the strain fields are not only localized by attachment of the
stiff strain gauge material but also depends on the geome-
try of the test samples. Swan [13] deduced an approximate
expression to predict the global reinforcement effect, which
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has been found to be proportional to the stiffness ratio of
the strain gauge and the test sample as well as the thickness
ratio. Moreover, Little et al. [14] observed that the reinforce-
ment effect is affected not only by the specimen geometry,
but also by the loading mode e.g. bending or tension.

Similar to strain gauges, fibre Bragg grating sensors have
shown a reinforcement effect [15, 16]. Li et al. [16] has
obtained a higher amount of reinforcement for fibre Bragg
grating sensors, even though the elastic modulus of glass
is much lower than that of the metal incorporated in strain
gauge manufacturing. This was found to be due to the larger
dimensions of glass fibres used for Bragg grating sensors.

In conclusion, the reinforcement effect was identified
already in early studies of strain gauge implementation,
where approximative mathematical expressions were pre-
sented in order to predict the strain gauge measurement
errors coming from the local and global reinforcement
effects. In the previous studies a simplified model of the
strain gauge has been used homogenizing all parts of the
strain gauge into one element. Therefore, the importance
of the actual strain gauge pattern design has not been suf-
ficiently discussed and error prediction has found to be
limited. In addition, previous studies have been confined
to elastic materials. Some research has been done to anal-
yse gauge factor variations due to the plastic deformation
of the metallic grid incorporated in the strain gauges [17–
19]. Nevertheless, changes of the reinforcement effect due
to plastic deformation both of the specimen and the strain
gauge material has not previously been studied.

The purpose of the present study is to derive correction
methods for the strain gauge experimental measurements,
when a strain gauge is applied on specimens with elastic
modulus in the range of 1-200 GPa and various geometrical
dimensions. The finite element methods (FEM) are used to
create detailed two (2D) and three (3D) dimensional models,
in order to conduct a parametric study to assess the effect
of specimen and strain gauge geometry with respect to the
stiffness, both with the local and the global reinforcement
effect. The 3D study of the strain gauge geometry is based
on commercially available Y series strain gauges provided
by the Hottinger Baldwin Messtechnik GmbH (HBM) com-
pany, but the results will not be limited to this. The study
considers both elastic and plastic deformation in the strain
gauge as well as in the test sample.

Methods

Simulation model

The commercial finite element code ABAQUS is used to
create 2D and 3D numerical models of the experimental
material set-up. This setup consists of a test sample with

attached back-to-back strain gauges, which is subjected to
tensile loading.

Parts

The test sample is modelled with a stiffness from 1 GPa to
200 GPa. The purpose is to cover the range of materials used
for polymer matrix based composites and also to compare
their response to metals. The thickness of the test sample
is varied from 1 mm to 30 mm, so that both the global
and the local reinforcement effect by the strain gauge is
presented.

The detailed strain gauge pattern is included in the 3D
model obtained from the micrographs (Fig. 1 (a), (b)) cap-
tured with a photo camera Canon G9. The width of the
inner grids is set to 0.08 mm and the space between grids is
0.1 mm, which corresponds to the strain gauge type LY11-
10/350. In the 2D plane stress simulation model, the strain
gauge part is simplified as a uniform foil with half the
thickness of gauge. This is due to merging the inner grids
and the empty space between grids. Even though the 2D
model is simplified, however similar to the 3D model, the
distinction of the end loops, gauge and soldering tab area
(Fig. 1 (a), (c)) is retained. For all strain gauge models the
length of the end-loops is set to 3 % of the correspond-
ing gauge length; a value, which corresponds quite well
with the commercially available HBM strain gauges. The
distinction of different strain gauge parts, what is done in
this analysis, is contrary to previous studies [4, 5, 10–12],
where a homogenised strain gauge model was preferred
by merging all parts of the strain gauge including carrier
film.

In order to exclude the effect of strain transition through
carrier film and adhesive, a numerical calibration is con-
ducted. The manufacturers provided gauge factor already
includes these distortions, because it is obtained, while the
commercial prototype of the strain gauge is glued on a
steel surface [11]. Therefore numerical calibration involves
determination of strain distortions applying different type of
strain gauges, shown in Fig. 1, on a 200 GPa stiff and sig-
nificantly thick material. The observed strain discrepancy of
approximately 1 % is thus extracted from all the numerical
results.

Material formulation

The metallic wire and the polymeric carrier film in the
HBM Y series strain gauge is made of constantan and poly-
imide, respectively. The corresponding material properties
are taken from Stockmann studies [20]. The polyimide car-
rier film is modelled as a linear-elastic material with E = 3.1
GPa and ν = 0.41. The constantan is modelled as an elastic-
plastic material with the elastic properties as E = 180 GPa
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and ν = 0.3, and the plastic deformation is described with
Ludwik’s equation:

σ = σy

[
1 + a(φ)n

]
, (1)

where the yield stress σy = 400 MPa, hardening parameters
a = 4 and n = 0.45 and φ is the plastic deformation.

Constraints and elements

All material interfaces are modelled as perfectly bonded
materials, thus are given as a tie constraint with no require-
ments of matching FE-meshes in the numerical procedure.
A half model using 4 node isoparametric quadrilateral plane
stress elements in the 2D representation, and a quarter
of the model using 8 node isoparametric brick elements
in the 3D representation of the test set-up is modelled
using symmetric boundary conditions. The prescribed dis-
placement boundary condition is used to mimic the tensile
deformation.

Experimental testing

Validation of the simulation is done by performing ten-
sile tests of a neat polymer and polymer matrix based
glass fibre reinforced composites using a range of stiff-
ness as E ∈ [1; 37] GPa and thickness as tspec ∈ [1.5,
20] mm). The corresponding experiments are performed
on a universal testing machine Instron 88R1362 with a 5
kN (SN: UK 802) or a 100 kN (SN: UK 1028) load cell.
Specimens with and without strain gauges LY11-10/350 are
tested using reference measurement methods with a laser
extensometer (’Fiedler Optoelektronik GmbH’, PS-E50-
0160-AH) and a clip on extensometer (Instron 2620-601,
± 5/50 mm). Therefore two reference strain values of the
test sample are presented. The first set of strain values is
gained from the clip on extensometers mounting them on
the samples with attached back-to-back strain gauges. The
second set of strain values is measured by the laser exten-
someter, which is applied on the unreinforced test sample
(the strain gauges are not attached to the test sample).

Correction coefficient determination

A correction coefficient, C, see equqtion (5), is defined in
order to evaluate the error of strain gauge measurements
and to provide gauge factor adjustment values [10]. The
gauge factor, GF, of the strain gauge is defined as the ratio
between the electrical resistance change and the deforma-
tion in the gauge:

GF = �R/R0

εgauge

, (2)

where �R/R0 is the relative change of resistivity and εgauge

is the strain in the gauge. Manufacturers provided strain
gauges are calibrated on sufficiently large and stiff mate-
rials such as steel [11]. If the strain gauges are applied on
compliant materials, new calibrations are needed, because
the strain fields are changed due to the stiffness differ-
ence between the strain gauge and the specimen material.
Additional calibration can be avoided by correcting manu-
factures’ provided gauge factors as follows:

GFact = GFcal

C
, (3)

where GFact is the actual gauge factor and GFcal is the
calibrated gauge factor provided by the strain gauge man-
ufacturers. From equations (2) and (3) the strain gauge
measurement error can be deduced as follows:

C = GFcal

GFact

= �R/R0

εsg

εave

�R/R0
= εave

εsg

, (4)

where εave and εsg are the strains experienced by the spec-
imen and the strain gauge, respectively. The correction
coefficient can also be expressed as the ratio of elastic mod-
ulus determined by the strain gauge (Esg) and actual elastic
modulus of material (Espec):

C = εave

εsg

= εaveσ

εsgσ
= Esg

Espec

. (5)

Results

The finite element model is first used to investigate the
strain gauge caused strain disturbances in the test sam-
ples. This is followed by a parametric study to obtain the
most significant strain gauge and test sample properties,
which affect the correction coefficient of the gauge factor.
The parametric study includes an analysis of the material
stiffness, the strain gauge and the test sample geometri-
cal properties, and the elastic-plastic material behaviour.
Numerical results are compared to experimentally deter-
mined correction coefficients.

Strain gauge introduced strain disturbances

The accuracy of the strain gauge measurements depends
on the amount of the reinforcement effect, which is caused
by the stiffness discrepancy between the specimen and the
strain gauge material. As shown in Fig. 2 as well as dis-
cussed by Little et al. [14] the reinforcement effect includes
the strain reduction in the specimen and the strain distor-
tions around the edges. The reinforcement effect can be split
up into a local and a global part. The global part describes
the phenomenon, where strains are modified through the
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whole thickness with the attached strain gauge. The influ-
ence of the global reinforcement increases by reducing the
specimen thickness and increasing the strain gauge geo-
metrical dimensions, for more details see subsection “Cor-
rection coefficient influenced by specimen geometry”
and “Correction coefficient influenced by strain gauge
geometrical properties”. By contrast, in the local part,
strains are considered to change only close to the attached
strain gauge and the effect of the test sample thickness can
be eliminated.

In Fig. 2(a), the contour plots of the logarithmic axial
strain component, ε11, in a 3D model from the XY, XZ and
XYZ planes are presented for the local reinforcement. The
total region of distorted strains is approximately double the
gauge length for a 1 GPa stiff specimen attached to the strain
gauge type LY11-10/350. The contour plots reveal both a
strain reduction below the gauge and a non-uniform strain
distribution along the strain gauge width (z axis) and length
(x axis) directions.

In the length direction, the strain distortions are mainly
caused by the strain transition between materials with mis-
matching stiffness. These strain transition points are also
illustrated in Fig. 2(b), where the normalized strain distri-
bution along the specimen surface and inside the gauge is
presented. Normalized strains are obtained dividing strains

at the surface of the specimen by the average strain expe-
rienced over the whole specimen. Sharp peaks of the nor-
malized strains are related to the edges where strains are
transferred between the metal and carrier film, also the car-
rier film and the test sample. Peaks indicate very large
and very low strain existence along the edges. Due to the
strain distortions along the edges, inside the gauge the nor-
malized strains tend to decrease close to the end-loops,
which respectively affects the strain measurement accuracy
of strain gauge devices.

In the width direction, in Fig. 2(a), which corresponds
to the z axis, the strain field variations are smaller
and depend more on the strain gauge pattern features.
For example, it is observed that the strain drop in the
gauge ends tends to be smaller when moving to the side
edges of the test sample. Also the soldering tabs are
found to lower the strain disturbances around the end-
loops.

Correction coefficient influenced by the elastic modulus
of specimen

Figure 3 shows the correction coefficient obtained by the
2D and the 3D simulation models for the test samples
with different elastic moduli attached to the strain gauge

Fig. 2 Strain fields in the 3D
model at εave = 0.35 % (a) and
normalized strain distribution
along the specimen surface and
inside the gauge obtained by the
3D model at εave = 0.012 %.
Strain path for specimen is
between points (-15, -10−3,
1.55) and (15, -10−3, 1.55), and
for the gauge including the
end-loops between (-5.3, 4.8 x
10−2, 1.55) and (5.3, 4.8 x 10−2,
1.55) (b)

(a)

(b)
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LY11-10/350. The 3D model predicts that the correction
coefficient can be as high as 1.3 for the 1 GPa specimen,
i.e., the strain gauge measurement error is 30 %. This is
reduced by increasing the specimen stiffness, hence a 10
GPa stiff specimen has a correction coefficient around 1.04,
i.e., a 4 % measurement error. A further increase of the test
sample stiffness reduces the correction coefficient down to
1 %, therefore no error is expected for the test sample with
Espec = 200 GPa.

Along with the numerical results, in Fig. 3, experimen-
tal data are presented for an unreinforced polymer material
test sample with tspec = 4 mm and an attached strain
gauge with Lgauge = 10 mm. Experimentally the elastic
modulus is acquired using two different reference strain
measurement methods, Eref . The first experimental data
point, noted as Laser, is obtained measuring strains with
a laser extensometer for the test sample without attached
strain gauges. Hence the elastic moduli for unreinforced
test samples is noted as Espec. The second data point,
noted as Extensometer, is gained from the test samples
with attached back-to-back strain gauges simultaneously
with clip on extensometers, which are used to measure
the actual strains in the test sample. Experimental results
shown in Fig. 3 indicate that the correction coefficient
(Espec = 2.15 ± 0.01 GPa and Eext+sg = 2.22 ± 0.01 GPa)
is changed from 1.17 to 1.12, and thus is decreased by
5 %, implementing the second reference strain measurement
method, Eext+sg . Further in this paper, for most of the exper-
imental results the correction coefficient is derived with the
second method due to conveniences in experimental testing.
This is underestimating the correction coefficient which is
needed for actual test sample stiffness determination.

Furthermore, numerically the effect of the reference
strain measurement method on the correction coefficient

1 10 100
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1.2

1.3

1.4

Eref, GPa

C
 =

 E
sg

/E
re

f

Laser

Extensometer

3D Espec

3D Eext+sg

2D Espec 
2D Eext+sg 

Experiments

Fig. 3 Comparison between the 2D and the 3D models introducing
different reference values (Lgauge = 10 mm, tspec = 4 mm)

with the test samples stiffness is presented. The results
obtained are shown in Fig. 3. Estimated values in 3D and 2D
reveal that the difference between correction coefficients are
7.5 % and 10 %, respectively, for the specimen with an elas-
tic modulus of 1 GPa. The deviation is gradually declining
for stiffer test samples.

Correction coefficient influenced by strain gauge
geometrical properties

Evaluation of the gauge thickness and length is presented for
the strain gauges listed in Table 1. The correction coefficient
rises linearly up to 3 % by increasing the gauge thickness
from 3.8 to 5.0 μm, if tspec = 30 mm and Espec = 1 GPa. The
larger correction coefficient changes are observed changing
the gauge length from 1.5 mm to 10 mm. For example, in
Fig. 4 the 2D model results show that the correction coeffi-
cient increases up to 1.52, i.e., the strain gauge measurement
error is 52 %, if tspec = 30 mm, Espec = 1 GPa and Lgauge =
1.5 mm. Furthermore, the error is gradually reduced to 14 %
for longer strain gauges with Lgauge = 10 mm.

In addition, the numerical results are compared with the
analytical model derived for the local reinforcement effect
by Ajovalasit et al. [10, 11] as follows:

CAjovalasit = εave

εsg

= 1 + E∗
sg

Espec

, (6)

where E∗
sg is the reduced Young’s modulus of the homog-

enized strain gauge, which characterizes the strain gauge
sensitivity to the reinforcement effect and depends on
the strain gauge stiffness, thickness and length [10]. The
reduced Young’s modulus for the strain gauges with
Lgauge = 3 mm and Lgauge = 10 mm is given by Ajovalasit
et al. [11] as 265 MPa and 175 MPa, respectively. Compar-
isons indicate deviations around 2.7 % for the strain gauges
with Lgauge = 10 mm and increase up to 10 % reducing the
gauge length to 3 mm.

Further study revealed that the correction coefficient
dependency on the strain gauge length is related to the strain
distortions inside the gauge. In Fig. 2(b) results show that
the strain distribution in the gauge sections has a curved
shape with higher strains in the middle section, which tend

Table 1 Geometrical dimensions of HBM strain gauges (LY11-
Lgauge/350)[1]

Lgauge Bgauge tgauge LPI tPI

(mm) (mm) (μm) (mm) (μm)

1.5 1.2 5.0 5.7 45.0

3.0 1.5 5.0 8.5 45.0

6.0 2.9 5.0 13.0 45.0

10.0 5.0 5.0 18.5 45.0
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Fig. 4 The 2D simulation results presenting correction coefficient
variations with strain gauge length (tspec = 30 mm)

to approach the actual strain values of the test sample, and
lower strains at the ends of the gauge. Analysing the strain
distortions in the test samples, which are attached to the
strain gauges with different lengths, it is observed that for
shorter strain gauges the strains close to the ends reduce
an average strain of the gauge more significantly. The rea-
son is that for the shorter strain gauges the middle part of
the gauge, which is unaffected by the edges, is narrower
than is observed for the longer strain gauges. Therefore
increasing the length of the strain gauge, the section of the
gauge, which is unaffected by the edge effects, increases and
contribute to higher accuracy of strain gauge measurements.

Correction coefficient influenced by specimen geometry

In the following subsection, the reinforcement effect sensi-
tivity to the specimen dimensions such as width [10] and
thickness [14] is discussed.

In Fig. 5(a), the 2D model results present the correction
coefficient variations with the elastic modulus and the thick-
ness of test sample, which is attached to the strain gauges
with a gauge length 10 mm. Data obtained reveal a high
sensitivity of the correction coefficient to the test sample
thickness. Results show that for a 30 mm thick sample the
correction coefficient is around 1.15 and it increases up to
2.18, i.e., obtaining 118 % of the strain gauge measure-
ment error, when the test sample thickness is reduced to
1 mm. From Fig. 5(a) it is seen that the effect of the test
sample thickness is larger for more compliant test samples.
However, the reinforcement can still be significantly large
even for relatively stiff, but thin test samples. For instance,
the correction coefficient is as high as 1.15, which corre-
sponds to a 15 % measurement error, if the elastic modulus
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Fig. 5 The 2D model results presenting the correction coefficient vari-
ations with the specimen thickness and elastic modulus, if Lgauge =
10 mm

and thickness of the test sample is 10 GPa and 1 mm,
respectively.

Additionally, in Fig. 5(b) a comparison between numer-
ical and experimental results is given. The experimen-
tal data are shown for the test samples with different
thicknesses and material stiffnesses, which are attached
to the strain gauges with a gauge length 10 mm. The
largest correction coefficient values are obtained for the
neat polymer materials noted as P1 and P2, which
are also the most compliant materials used in this
study. In addition, these experimental results demonstrate
the influence of the test sample thickness, i.e., even though
P2 is softer than P1 it has the same correction coefficient
value due to the thicker test sample. Further the correction
coefficient descend for multi-axial glass fibre and polymer
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matrix composites, noted as C1, C2, C3, C4 and C5, which
are around ten times stiffer than the neat polymer material
test samples. From Fig. 5(b) it is seen that the correla-
tion between the experimental correction coefficient and the
test sample material stiffness follows the same tendency as
it is numerically predicted. Nevertheless, the effect of the
test sample thickness is not captured for composite mate-
rials. The authors suggest this is due to the substantially
inhomogeneous structure of composites.

Numerical results are also verified with the analytical
model proposed by Swan [13]. This model is intended for
the correction coefficient determination, if a global rein-
forcement effect is present, and it can be calculated as
follows:

CSwan = 1 + 2Esgtsg

Espectspec

, (7)

with Esg and tsg as the elastic modulus and the thickness
of an homogenized strain gauge, respectively. The elas-
tic modulus of an homogenized strain gauge is taken from
Ajovalasit et al. study [11]. Results, presented in Fig. 5(a),
show that the analytically determined correction coeffi-
cients deviate from the numerical results by 5 % to 12 %
depending on the test sample thickness.

Furthermore, the study shows that the impact of the test
sample thickness on the correction coefficient determina-
tion is limited. In Fig. 6, the 2D predictions indicate the
presence of a transition point at certain critical thickness,
tcr , after which the correction coefficient tends to satu-
rate and retain permanent value, C0. The critical thickness
is attributed to the transition between the local and the
global reinforcement by the strain gauge. The difference
between these two reinforcement effects are described in
subsection “Strain gauge introduced strain disturbances”.
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Fig. 6 The 2D model results presenting the effect of the specimen
thickness on the correction coefficient applying different length strain
gauges, if Espec = 1 GPa

The critical thickness obtained is found to be dependent
on the strain gauge length, i.e., implementing shorter strain
gauges the critical thickness is reduced.

In addition, the effect of the specimen width is evaluated
by a 3D model, where tspec = 10 mm and Espec = 1 GPa.
Increasing the specimen width from 10 mm to 20 mm the
correction coefficient is reduced from 1.141 to 1.127, thus
it is 2.5 % lower. The simulation results obtained agree well
with the similar study done by Ajovalasit and Zuccarello
[10], who also found that the width effect is negligible,
when the width ratio of the specimen and strain gauge
(Bspec/Bsg) exceeds 3.

Correction coefficient influenced by plastic deformation

The elastic-plastic material definition of the test sample is
included to evaluate the correction coefficient changes at
deformation levels exceeding the elastic region. In Fig. 7
the experimentally and in 2D correction coefficient obtained
is presented for the specimen with dimensions 85 x 10 x
4 mm3 and E = 2.1 GPa mounted on the strain gauge LY11-
10/350. The correction coefficient is determined from the
ratio of the strain measured by the extensometer and strain
gauge according to equation (4).

The experimental results, shown in Fig. 7, indicate non-
uniform correction coefficient values in the strain region of
0.05 % - 0.25 %, which is used for elastic modulus determi-
nation of polymers accordingly to the standard ISO 527-1
[7]. The observed non-uniformity of the experimentally
determined correction coefficient is not known. Comparing
averaged experimental correction coefficient values with
numerical results the difference is below 5 %, which is
considered as small.
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Fig. 7 Correction coefficient changes with plastic deformation
(tspec = 4 mm; Lgauge = 10 mm and Espec = 2.3 GPa)
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Beyond this deformation region the correction coeffi-
cient descends both for experimental and 2D results. In the
2D model, the correction coefficient starts to decrease at
a strain of 0.24 %, whereas for some of the experimental
results it is observed with even smaller values. The change
of the correction coefficient is attributed to initiation of plas-
tic deformation in constantan, which is the main component
of the metallic parts in the strain gauge [2]. Continuing to
deform the test sample above 1 % strain, the correction
coefficient values again begin to rise. The ascending part is
explained with more pronounced stiffness reduction by the
test sample material during plastic deformation than it is in
constantan.

Discussion on correction coefficient determination

Results revealed that the strain gauge measurement pre-
cision significantly alters with specimen stiffness and is
considerably influenced by test sample and strain gauge
geometry. The specimen thickness and the gauge length are
found to be the most crucial geometrical dimensions. Gener-
alizing results, the largest strain gauge measurement errors
are expected for short strain gauges bonded to thin and
compliant specimens.

In subsection “Correction coefficient influenced by
specimen geometry”, it is shown that the correction coef-
ficient gradually decreases for thicker specimens, however
the effect of thickness is limited. The numerical results pre-
dict that an increase of test sample thickness improves the
strain gauge measurement precision only up to some critical
value, i.e., tcr - critical thickness. Further the enlargement
of thickness has no impact on strain gauge measurements,
and it is explained with a transition from a global to only
local reinforcement effect. The critical thickness is depen-
dent on strain gauge length and independent of specimen
stiffness. Hence for each type of strain gauge the optimal
test sample thickness can be determined to minimize the
gauge measurement errors. In addition, if the optimal thick-
ness is known then the effect of test sample thinning can be
sufficiently well predicted by mathematical model provided
by Swan [13]. The drawback of this model is that it does not
provide any information about the transition between local
and global reinforcement, and the optimal geometry of a
specimen.

Furthermore, when the strain gauge is bonded on the test
samples with a thickness above the critical one, the global
reinforcement, i.e., strain distortions through the whole
thickness, can be neglected. Therefore for thick test sam-
ples the reinforcement by the strain gauge is localized and
the effect of the specimen geometry can be excluded. In
the local reinforcement the strain gauge measurement accu-
racy depends mainly on the strain gauge geometry and the

test sample stiffness. In subsection “Correction coefficient
influenced by specimen geometry”, the 2D results demon-
strate the importance of strain gauge geometry. The strain
gauge length is found as a dominating parameter affecting
the measurement accuracy of commercially available strain
gauges used in this study. The correction coefficient needed
to adjust the strain gauge measurements is larger imple-
menting shorter strain gauges, even though longer strain
gauges contributed to a larger volume of total strain field
disturbances. This phenomenon is explained with uneven
strain distribution in the gauge, which is caused by the strain
transition between materials with mismatching stiffness.
For more details see subsection“ Strain gauge introduced
strain disturbances” and “Correction coefficient influenced
by strain gauge geometrical properties”.
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In subsection“ Correction coefficient influenced by plas-
tic deformation”, it is shown that plastically deforming the
test sample the correction coefficient tends to decrease due
to the plastic deformation of constantan. Nevertheless, it is
expected that the resultant correction coefficient depends on
the competition between plastic deformation of specimen
and constantan. More pronounced stiffness reduction by the
test sample will lead to an increase of the correction coeffi-
cient, and it will descent with larger stiffness reduction by
constantan.

Practical determination of correction coefficient

The results reveal that the strain gauge measurement preci-
sion significantly depends on the specimen thickness, strain
gauge length and amount of total deformation. Experimen-
tally obtained strain gauge measurements can be modified
by the correction coefficient considering the effect of these
critical parameters. Otherwise calibration of the strain gauge
on the specific test sample has to be performed. This study
is focused on the adjustment of experimental results using
numerically obtained correction coefficients accounting for
the dominating local or global reinforcement effect.

In Fig. 8 the correction coefficient variations with elas-
tic modulus determined by the strain gauge are presented
for different specimen thicknesses. Therefore, the actual
specimen’s elastic modulus can be extracted using experi-
mentally obtained strain gauge measurements and applying
equation (5). The correction coefficient values are pre-
sented for specimens with attached strain gauges of type
LY11-10/350 (Fig. 8(a)) and LY11-3/350 (Fig. 8(b)).

Figure 9 summarizes the results shown in Fig. 6 for the
strain gauges with different lengths mounted on a 1 GPa
stiff test sample. From this, a bi-linear correlation between
the correction coefficient and the aspect ratio of the gauge
length and the specimen thickness can be observed. A
bi-linear correlation indicates a transition between locally
and globally dominating reinforcement. Therefore above
the critical thickness, i.e., lower values of Lgauge/tspec, the
correction coefficient is constant and indicates the local
reinforcement dominating region. Decreasing the specimen
thickness, i.e., increasing the values of Lgauge/tspec, the
correction coefficient tends to increase linearly and this is
attributed to the global reinforcement dominating region.
Depending on the current reinforcement effect the correc-
tion coefficient can be expressed as follows:

C =
{

C0 + ALgauge
tcr−tspec

tcr tspec
, tspec < tcr

C0, tspec > tcr
(8)

By fitting a linear relation between the correction coeffi-
cient and Lgauge/tspec for thinner specimens, a parameter A

Fig. 9 The effect of specimen thickness and grid length on correction
coefficient

is extracted. In Fig. 10, conversion of the parameter A and
the permanent correction coefficient with the test sample
elastic modulus is demonstrated. It is found that the param-
eter A and the permanent correction coefficient both depend
on the gauge length and elastic modulus of the specimen -
tending to reduce with stiffer specimens. The critical thick-
ness is found to be independent of the elastic modulus of the
specimen, thus the critical thickness is estimated to be 3.3,
4.4, 6.5 and 9.5 mm for strain gauges with gauge lengths
1.5, 3.0, 6.0 and 10.0 mm, respectively.

Figure 11 presents the 2D model prediction of the correc-
tion coefficient variations for strains up to 5 % by including
only the elastic-plastic material properties of the strain
gauge metallic part. Simulation results are presented for
the specimens with elastic modulus 1, 1.5, 3 and 10 GPa.
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The outcome demonstrates that the effect of the reinforce-
ment will tend to decrease due to the plastic deformation
of the constantan wire and softer materials will be more
prone to the correction coefficient reduction. Nevertheless,
the final C depends also on the specimen stiffness reduc-
tion as is shown in Fig. 7, where the correction coefficient
increases due to the larger stiffness reduction by the spec-
imen. Thus Fig. 11 allows one to determine the correction
coefficient for a gauge factor, if the amount of specimen
stiffness reduction with plastic deformation is known.

Conclusions

Results reveal that even for moderately stiff test materials
sufficiently high correction coefficient values have to be
used if short strain gauges are attached on thin test samples.
Therefore the strain gauge length and the test sample thick-
ness are found as the most significant geometrical dimen-
sions. Depending on the correlation of these two parameters
the dominating reinforcement effect by the strain gauge is
divided into global and local ones. For each of the reinforce-
ment effects different correction coefficient determination
methods are applied. The transition between the global and
only the local reinforcement effect is characterized with a
critical thickness, above which only the local reinforcement
effect exists. The critical thickness depends solely on the
strain gauge length, thus can be used to optimize the test
sample thickness.

In addition, it is observed that the correction coefficient
tends to decrease due to plastic deformation of the strain
gauge metallic part – constantan. Nevertheless, the resul-

tant correction coefficient depends also on the test sample
material deformation.

Acknowledgments This research was supported by the Danish
Centre for Composite Structure and Materials for Wind Turbines
(DCCSM), grant no. 09-067212, from the Danish Strategic Research
Council (DSF).

References

1. HBM. Strain Gauge Catalog, www.hbm.com
2. Hoffmann K (1989) An Introduction to Measurements using

Strain Gages
3. Perry CC (1984) The resistance strain gage revisited. Exp Mech

24(4):286–299
4. Stehlin P (1972) Strain distribution in and around strain gauges.

The Journal of Strain Analysis for Engineering 7(3):228–235
5. Beatty MF, Chewning SW (1979) Numerical analysis of the

reinforcement effect of a strain gage applied to a soft material.
International Journal of Engineering Science 17(7):907–915

6. Watson RB (2008) Bonded electrical resistance strain gages.
In: Sharpe WN (ed) Springer handbook of experimental solid
mechanics, chapter 12. Springer, New York, pp 283–333

7. ISO 527-1: Plastics - Determination of tensile properties - Part 1:
General principles, 1993

8. ISO 527-1: Plastics - Determination of tensile properties - Part 5:
Test conditions for unidirectional fibre-reinforced plastic compos-
ites, 2009.

9. ASTM D5379/D5379M-12: Standard Test Method for Shear
Properties of Composite Materials by the V-Notched Beam
Method, 2012

10. Ajovalasit A, Zuccarello B (2005) Local reinforcement effect of a
strain gauge installation on low modulus materials. The Journal of
Strain Analysis for Engineering Design 40(7):643–653

11. Ajovalasit A, D’Acquisto L, Fragapane S, Zuccarello B (2007)
Stiffness and Reinforcement Effect of Electrical Resistance Strain
Gauges. Strain 43(4):299–305

12. Ajovalasit A (2011) Advances in Strain Gauge Measurement on
Composite Materials. Strain 47(4):313–325

13. Swan JW (1973) Resistance strain gauges on thermoplastics.
Strain 9(2):56–59

14. Little EG, Tocher D, O’Donnell P (1990) Strain gauge reinforce-
ment of plastics. Strain 26(3):91–98

15. Luyckx G, Voet E, De Waele W, Degrieck J (2010) Multi-axial
strain transfer from laminated CFRP composites to embedded
Bragg sensor: I. Parametric study. Smart Materials and Structures
19(10):105017

16. Li W, Cheng C, Lo Y (2009) Investigation of strain transmis-
sion of surface-bonded FBGs used as strain sensors. Sensors and
Actuators A: Physical 149(2):201–207

17. Ajovalasit A (2012) The Measurement of Large Strains Using
Electrical Resistance Strain Gages. Experimental Techniques
36(3):77–82

18. Krempl E (1968) Evaluation of high-elongation foil strain gages
for measuring cyclic plastic strains. Exp Mech 8(8):19N–26N

19. Rees DWA (1986) The sensitivity of Strain Gauges when Used
in the Plastic Range. International Journal of Plasticity 2(3):
295–309

20. Stockmann M (2000) Micromechaniche Analyse der
Wirkungsmechanismen elektrischer Dehnungsmessstreifen. PhD
thesis, Technischen Universitat Chemnitz

www.hbm.com

	Exp Mech
	Abstract
	Notations
	Subscripts
	Introduction
	Methods
	Simulation model

	Parts
	Material formulation
	Constraints and elements
	Experimental testing
	Correction coefficient determination

	Results
	Strain gauge introduced strain disturbances
	Correction coefficient influenced by the elastic modulus of specimen
	Correction coefficient influenced by strain gauge geometrical properties
	Correction coefficient influenced by specimen geometry
	Correction coefficient influenced by plastic deformation

	Discussion on correction coefficient determination
	Practical determination of correction coefficient
	Conclusions
	Acknowledgments
	References


